Ahorro energético en vivienda social mediante la implementación de materiales regionales

Autores/as

DOI:

https://doi.org/10.32870/rvcs.v0i8.142

Palabras clave:

aislamiento, ahorro energético, materiales regionales

Resumen

Los materiales con que habitualmente se construye la envolvente de la vivienda social en clima cálido subhúmedo, al ser evaluados por su conductividad térmica, son ineficientes, porque afectan la habitabilidad interior. Para revertir el estado de ineficiencia térmica de la vivienda se introdujo en la industria de la construcción el uso de materiales termoaislantes que se evalúan por su capacidad de resistir el flujo de calor (resistencia térmica); sin embargo, esta adecuación en la envolvente involucra aumentar la energía incorporada del sistema. El objetivo de esta investigación fue determinar la posibilidad del uso de materiales regionales para su potencial uso como aislante. Las configuraciones de materiales para cubierta fueron seleccionadas por su coeficiente de conductividad térmica y evaluadas por la capacidad de aislamiento según la nmx-c-460-onncce que involucra el cálculo de la resistencia térmica (R). Se identificó de adecuado el desempeño del carrizo (Arundo Donax) y caña maíz (Zea Mays) para elaborar una cubierta para una región específica, que cumple con ahorro de energía al ser evaluada por la NMXC-460-ONNCCE. Se discute el análisis térmico de los materiales solo por su conductividad, ya que existen otras propiedades, como densidad y calor específico, que se relacionan de manera dinámica, independientemente de que no se consideren en la evaluación de la resistencia térmica. Se concluye que el análisis de las propiedades térmicas, previo al diseño, permite seleccionar materiales para configurar envolventes con respuesta térmica eficiente en la región.

Métricas

Cargando métricas ...

Biografía del autor/a

César Armando Guillén Guillén, Universidad Nacional Autónoma de México, México

Doctor en Arquitectura por la Universidad Nacional Autónoma de México, arquitecto y maestro con especialidad en Arquitectura Sustentable por la Facultad de Arquitectura de la Universidad Autónoma de Chiapas. Actualmente es profesor investigador adscrito a la Unidad de Posgrado de Arquitectura por la Universidad Nacional Autónoma de México. Desarrolla trabajos de investigación en materiales regionales y sistemas estructurales evaluando propiedades físicas, mecánicas y térmicas.

Alberto Muciño Vélez, A. Mucino, Universidad Nacional Autónoma de México, México

Doctor y maestro en Arquitectura por la Universidad Nacional Autónoma de México. Recibió la medalla Alfonso Caso por haber sido el graduado mas distinguido del Programa de Doctorado en Arquitectura y recientemente se le otorgó la distinción Universidad Nacional para Jóvenes Académicos en el área de Arquitectura y Diseño por su labor en la investigación. Actualmente se encuentra adscrito al Centro de Investigaciones en Arquitectura, Urbanismo y Paisaje de la Facultad de Arquitectura de la Universidad Nacional Autónoma de México. Es miembro del Sistema Nacional de Investigadores del CONACYT, así como responsable del Laboratorio de Materiales y Sistemas Estructurales sede centro del Laboratorio Nacional de Vivienda y Comunidades Sustentables CONACYT, donde actualmente desarrolla estudios de manera multidisciplinaria. Su investigación se centra en los materiales cerámicos y sus características físicoquímicas y mecánicas en el estudio de materiales regionales y su aplicación en la arquitectura.

Citas

Alchapar, N.; Correa, E. y M. Cantón (2013), "Influencia del envejecimiento de los materiales en su desempeño térmico: El caso de revestimientos texturados para fachadas". Revista Latinoamericana de Metalurgia y Materiales, 33 (2), 282-291.

American Society of Testing Materials (2010) ASTM C518-10, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus.

Asdrubali, F. (2009), The Role of Life Cycle Assessment (LCA) in the Design of Sustainable Buildings: Thermal and Sound Insulating Materials Proceedings of Euronoise. Edinburg, Scotland.

Asdrubali, F. y G. Baldinelli (2011), "Thermal Transmittance Measurements with the Hot Box Method: Calibration, Experimental Procedures, and Uncertainty Analyses of Three Different Approaches". Energy Build, 43, 1618-1626. https://doi.org/10.1016/j.enbuild.2011.03.005

Asdrubali, F.; D'Alessandro, F. y S. Schiavoni(2015), "A Review of Unconventional Sustainable Building Insulation Materials". Sustainable Materials and Technologies, vol. 4, julio, 1-17. Elsevier. Disponible en: https://doi.org/10.1016/j. susmat.2015.05.002.

Baldinelli, G. y F. Bianchi (2014), "Windows Thermal Resistance: Infrared Thermography aided Comparative Analysis among Finite Volumes Simulations and Experimental Methods. Appl. Energy, 136, 250-258. https://doi.org/10.1016/j.apenergy.2014.09.021

Barrios, G.; Huelsz, G.; Rechtman, R. y Rojas (2011), R. Wall/roof Thermal Performance Differences between Air-conditioned and Non-air-conditioned Rooms, Energy and Buildings.

https://doi.org/10.1016/j.enbuild.2010.09.015

Bedoya, C. M. (2003), El concreto reciclado con escombros como generador de hábitats urbanos sostenibles. Tesis de Maestría. Universidad Nacional de Colombia, sede Medellín.

Bojórquez, B. I.; Milagrosa Pérez, Ma. y A. J. Domínguez (2010), Análisis de los comportamientos físicos y de durabilidad de muros construidos con fibras leñosas de la región. Fondo Sectorial de Desarrollo Científico y Tecnológico para el Fomento de la Producción y Financiamiento de Vivienda y el Crecimiento del Sector Habitacional. Primer encuentro académico CONAVI--CONACYT, México df, 2 y 3 de febrero.

Building Research Establishment (2009), Framework Standard for the Responsible Sourcing of Construction Products. BREE Global, Watford. BES 6001: Issue 2.0.Calkins, M. (2009), Materials for Sustainable Construction Materials. Hoboken, NJ: Wiley.

Castañeda, N. G. y F. Vecchia (2007). "Sistema de techo alternativo para vivienda progresiva en Tuxtla Gutiérrez, Chiapas, México". Ingeniería, Revista Académica de la fi-uady, 11-2, 21-30.

Cengel Y. A. y Asshin J. Ghanarr (2015), Heat and Mass Transfer. Nueva York: McGraw Hill.

Código Técnico de la Edificación (2013), Documento básico he Ahorro de energía. Versión publicada en el "BOE", 12 de septiembre de 2013.

Comisión Económica para América Latina y el Caribe (2018), Informe nacional de monitoreo de la eficiencia energética de México.

Comisión Nacional para el Uso Eficiente de la Energía (2018), Análisis del impacto de las normas oficiales mexicanas de eficiencia energética en el ingreso-gasto del sector residencial de México a partir de datos de inegi (1990-2016), Cuadernos de la conuee, núm. 9. Consejo Nacional de Evaluación de la Política de Desarrollo Social (2017). Resultados a nivel nacional y por entidad federativa 2008*2018. Disponible en: https://www.coneval.org.mx/Medicion/MP/Paginas/Pobreza-2018.aspx

Cuchí Burgos, Albert (2005), Arquitectura i sostenibilitat. TTS. Barcelona: Ediciones UPC, p. 82.

González, E. (1997), Étude de matériaux et de techniques de refroidissement passif pour la conception architecturale bioclimatique en climat chaud et humide. Thése de doctorat en Energétique de l'Ecole des Mines de Paris, France.

Guillén, C.; Muciño, A.; Santa Ana, P. y G. Verduzco (2018), "Análisis de las propiedades térmicas del Arundo Donax (carrizo) y Zea Mays (caña maíz) para su uso como material aislante de cubiertas". Academia XXII.

Huelsz, G.; Rechtman, R. y J. Rojas (2009), "Altos valores de la resistencia térmica no aseguran un buen desempeño térmico de la envolvente de una edificación". Memorias de la xxxiii Semana Nacional de Energía Solar. 28 septiembre al 3 octubre. Guadalajara, Jalisco, México: ANES.

Huelsz, G.; Barrios, G; Rechtman, R. y J. Rojas (2010), "Importancia del análisis de transferencia de calor dependiente del tiempo en la evaluación del desempeño de la envolvente de una edificación", Anuario de Arquitectura 2009, Universidad Autónoma Metropolitana, en prensa.

Instituto Nacional de Ecología y Cambio Climático/Programa de las Naciones Unidas para el Desarrollo/ mgm Innova (2012). Estudio del impacto de medidas y políticas de eficiencia energética en los sectores de consumo, sobre el balance de energía y sobre los escenarios de emisiones de gases de efecto invernadero en el corto y mediano plazo.

Intergovernmental Panel on Climate Change (2014), Climate Change 2014: Mitigation of Climate Change: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge: Cambridge University Press.

https://doi.org/10.1017/CBO9781107415416

International Organization for Standardization (1996), ISO 8990 Thermal Insulation Determination of Steady-state Thermal Transmission Properties Calibrated and Guarded Hot Box (ISO 8990:1994).

--- (2000), iso12939-200. Thermal Performance of Building Materials and Products -Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods - Thick Products of High and Medium Thermal Resistance.

--- (2001), iso12664-2001. Thermal Performance of Building Materials and Products -Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods - Dry and Moist Products of Medium and Low Thermal Resistance.

--- (2007), iso6946 Building Components and Building Elements - Thermal Resistance and Thermal Transmittance - Calculation Method (2007).

--- (2017), ISO6946: 2017. Componentes y elementos de construcción. Resistencia y transmitancia térmica. Métodos de cálculo.

ITEC(2016) Banco de datos bedec, versión 33. Disponible en: http://itec.es/nouBedec.e/bedec.aspx. Consultado: 6 de mayo de 2020.

Khedari, N.; Nankongnab, J.; Hirunlabh, S. y Teekasap (2004), "New Low-cost Insulation Particleboards from Mixture of Durian Peel and Coconut Coir Build". Environ, 39, 59-65 [articledownload pdf view record in Scopus Google Scholar].

https://doi.org/10.1016/j.buildenv.2003.08.001

Kuehn, T. H.; Ramsey, W. W. y J. L. Threllkeld (2001), Thermal Environmental Engineering, Nueva Jersey: Prentice Hall.

Kymäläinen, H.-R. y A.-M. Sjöberg (2008), Flax and Hemp Fibres as Raw Materials for Thermal Insulations. Helsinki, Finlande: University of Helsinki - Department of Agrotechnology, pp.1261-1269. https://doi.org/10.1016/j.buildenv.2007.03.006

Manohar, K. (2012), "Experimental Investigation of Building Thermal Insulation from Agricultural By-products". Br. J. Appl. Sci. Technol., 2 (3), 227-239. https://doi.org/10.9734/BJAST/2012/1528

Marszal, A. J.; Heiselberg, P.; Bourrelle, J. S.; Musall, E.; Voss, K.; Sartori, I. y A. Napolitano (2011), Energy and Buildings. Disponible en: www.elsevier.com/locate/enbuild.

Morillón-Gálvez, D.; Saldaña-Flores, R. y A. Tejeda-Martínez (2004), "Human Bioclimatic Atlas for México", Solar Energy, vol. 76. https://doi.org/10.1016/j.solener.2003.11.008

Murphy, R. J. y A. Norton (2008), Life Cycle Assessments of Natural Fibre Insulation Materials. Londres: National Non-Food Crops Centre -NNFCC, p. 79.

Nicolajsen, A. (2005), Thermal Transmittance of a Cellulose Loose-fill Insulation Material. Horsholm, Dinamarca: Department of Building Technology and Productivity - Danish Building, p. 79. https://doi.org/10.1016/j.buildenv.2004.08.025

Nicolajsen, A. (2005), Thermal Transmittance of a Cellulose Loose-fill Insulation Material. Horsholm, Dinamarca: Department of Building Technology and Productivity - Danish Building and Urban Research, pp. 907-914. https://doi.org/10.1016/j.buildenv.2004.08.025

Norma Oficial Mexicana (2011), nom-018-eber-2011.Aislantes térmicos para edificaciones. Características y métodos de prueba.

Normas Mexicanas (2009), nmx-C-460-onncce-2009 (2011): Secretaría de Gobernación.

Nyers, J.; Kajtar, L.; Tomi?, S. y A. Nyers (2015). Investment-savings Method for Energy-economic Optimization of External Wall Thermal Insulation Thickness Energy Build, 86, 10.1016/j.enbuild.2014.10.023, pp. 268-274. https://doi.org/10.1016/j.enbuild.2014.10.023

Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S. C. (2009), Norma nmx460 Industria de la Construcción- Aislamiento Térmico - Valor R para las Envolventes en Vivienda por Zona Térmica para la República Mexicana - Especificaciones y Verificación, México. Organismo Nacional de Normalización y Certificación de la Construcción y Edificación

Papadopoulos, M. (2007), "State of Art in Thermal Insulation Materials and Aims for Future Developments". Energy and Buildings, vol. 37, núm. 1,77-86, 2005Hill.

https://doi.org/10.1016/j.enbuild.2004.05.006

Passive Houses Passive House Institute, phi (2009), Vienne, Autriche, p. 7.

Peruzzi, L. F.; Salata, A.; De Lieto Vollaro, R. y De Lieto Vollaro (2014), "The Reliability of Technological Systems with High Energy Efficiency in Residential Buildings". Energy Build, 68, 19-24. https://doi.org/10.1016/j.enbuild.2013.09.027

Pinto, J.; Paiva, A.; Varum, H.; Costa, A.; Cruz, D.; Pereira, S.; Fernández, L.; Tavares, P. y J. Agarwal (2011), "Corn's Cob as a Potential Ecological Thermal Insulation Material". Energy Build., 43, 1985-1990. https://doi.org/10.1016/j.enbuild.2011.04.004

Pinto, D.; Cruz, A.; Paiva, S.; Pereira, P.; Tavares, L.; Fernandes, L. y H. Varum (2012), Characterization of Corn Cob as a Possible Raw Building Material Constr. Build. Mater., 34, 28-33.

https://doi.org/10.1016/j.conbuildmat.2012.02.014

Pruteanu, M. (2010), "Investigations Regarding the Thermal Conductivity of Straw". Bulletin of the Polytechnic of Jassy, Constructions, Architecture Section.

Rivero Nogueiras, Verónica (2016). Análisis medioambiental de los aislamientos térmicos en la construcción. Tesis Doctoral. Universidade da Coruña. Rockwool. Tarifa 2016. Precios recomendados [S.l.]: Rockwool, 2015. Disponible en: http://download.rockwool.es/media/444219/tarifa_ROCKWOOL_2016_es.pdf. Consultado: 4 de mayo de 2020.

Ruiz Torres R. P., G. Castañeda Nolasco, T. Arguello Méndez, D. Morillón, & O. Reséndiz (2011) "Comparación del comportamiento térmico de una vivienda en clima cálido subhúmedo con la NOM-020-ENER". Memorias de la xxxv Semana Nacional de Energía Solar,anes, Chihuahua, Chihuahua, México, 3 al 7 de octubre.

Saint-Gobain (2016), ¿Qué es la Arlita Leca? Weber Saint-Gobain (s.n.). Disponible en: http://www.weber.es/soluciones-ligeras-con-arlitareg-lecareg/ayuda-yconsejos/que-es-arlitareg-lecareg.html. Consultado: 6 de mayo de 2020.

Sartori, I.; Napolitano, A.; Marszal, A. J.; Pless, S.; Torcellini, P. y K. Voss (2010), Criteria for Definition of Net Zero Energy Buildings. EuroSun Conference, Graz, Austria.

https://doi.org/10.18086/eurosun.2010.06.21

Schmidt, A.; Jensen, A. y A. Clausen, (2004), A comparative Life Cycle Assessment of Building Insulation Products made of Stone Wool, Paper Wool and Flax. Springer Berlin / Heidelberg, Berlin, pp. 53-66. https://doi.org/10.1007/BF02978536

Schnieders, J. (2003), CEPHEUS - Measurement Results from more than 100 Dwelling Units in Passive Houses. European Council for an-Energy Efficient Economy-Time to turn down energy demand, Vienne, Autriche, pp. 34

Secretaría de Energía (2015), "Programa de Desarrollo del Sistema Eléctrico Nacional PRODESEN) 2015-2029". Sistema de Información Energética (SIE), Disponible en: .

Torcellini, P.; Pless, S.; Deru, M. y D. Crawley (2006), "Zero Energy Buildings: A Critical Look at the Definition", en ACEEE Summer Stud, Pacific Grove, California, USA.

U.S. Department of Energy's (doe) (2012), Buildings Energy Data Book. Disponible en: https://openei.org/doe-opendata/dataset/6aaf0248-bc4e-4a33-9735-2babe4aef2a5/resource/3edf59d2-32be458b-bd4c-796b3e14bc65/download/2011bedb.pdf.

Unión Europea (2013). Commission European, Decision no 1386/2013/EU of the European Parliament and of the Council of 20 November 2013 on a General Union Environment Action Programme to 2020 'Living Well, Within the Limits of Our Planet' 7th Environmental Action Programme.

URSA (2016), Lista de precios recomendados. Marzo. Tarragona: URSA. Disponible en: http://www.ursa.es/es-es/productos/Documents/Tarifa_2016.pdf. Consultado: 6 de mayo de 2020.

Villegas, (2010), "La NMX-C-460-onncce-2009: un camino corto hacia la sustentabilidad".

Webb, R. (2002), Insulation for Sustainability - A Guide, XCO2, Londres, p. 83.

Wimmer, R.; Hohensinner, H. y L. Janisch (2000), Heat Insulation Performance of Straw Bales and Straw Bale Walls. Viena: grat - Center for Appropriate Technology - Vienna University of Technology, p. 1.

Ye, Z.; Wells, C. M. y C. G. Carrington (2006), Thermal Conductivity of Wool and Wool-hemp Insulation, John Wiley & Sons, pp. 37-49. https://doi.org/10.1002/er.1123

Zuo, J. y Z. Y. Zhao (2014), Green Building Research-current Status and Future Agenda: A Review. Renew. Sustain. Energy Rev., 30, 271-281. https://doi.org/10.1016/j.rser.2013.10.021

Publicado

31-07-2020

Cómo citar

Guillén Guillén, C. A., & Vélez, A. M. (2020). Ahorro energético en vivienda social mediante la implementación de materiales regionales. Vivienda Y Comunidades Sustentables, (8), 59–80. https://doi.org/10.32870/rvcs.v0i8.142