Aplicaciones de la modelación energética de edificaciones: revisión y casos de estudio en México

Autores/as

DOI:

https://doi.org/10.32870/rvcs.v0i12.213

Palabras clave:

simulación energética de edificios, BIM, TRNSYS, OpenStudio, eficiencia energética

Resumen

En este trabajo se presenta una revisión sobre la utilidad actual que tiene los programas que simulan el desempeño energético de edificaciones. Las aplicaciones de dichos programas tienen un fin común: contar con edificios más eficientes en cuanto a consumo de energía se refiere. La simulación del desempeño energético de edificios puede ser aplicada en las primeras etapas de diseño del edificio; durante la remodelación de un edificio para mejorar el desempeño térmico; para justificar o evaluar normas sobre eficiencia energética en edificaciones; o bien para evaluar el desempeño de un determinado material, sistema constructivo u otros componentes del edificio. En este trabajo también se exponen resultados de dos trabajos de investigación donde se utilizan dos diferentes programas de simulación energética de edificaciones. En el primer caso se utilizó el programa TRNSYS para evaluar el efecto de propiedades térmicas del techo sobre el costo de la energía de un edificio residencial. En el segundo caso corresponde a la calibración un modelo de simulación realizado con OpenStudio para evaluar el desempeño energético de un edificio académico.

Métricas

Cargando métricas ...

Biografía del autor/a

Jorge Lucero-Alvarez, Universidad Autónoma de Chihuahua, México

Jorge Lucero Álvarez estudió maestría y doctorado en el Centro de Investigación en Materiales Avanzados S. C. Actualmente trabaja en la Facultad de Zootecnia y Ecología de la Universidad Autónoma de Chihuahua. Su línea de investigación esta relacionada al la eficiencia energética en edificios y la simulación energética de edificaciones. Su más reciente articulo publicado se titula: "Design and Application of Cellular Concrete on a Mexican Residential Building and Its Influence on Energy Savings in Hot Climates: Projections to 2050".

Nathalie Socorro Hernández Quiroz, Universidad Autónoma de Chihuahua, México

Nathalie S Hernandez-Quiroz trabaja actualmente en la Facultad de Zootecnia y Ecología, de la Universidad Autónoma de Chihuahua y anteriormente en el Departamento de Ciencias Ambientales del Instituto Potosino de Investigación Científica y Tecnológica. Nathalie investiga en Bioestadística, Biología Evolutiva y Ecología. Su publicación más reciente es 'Modelos de idoneidad de hábitat para tomar decisiones de conservación basadas en áreas de alta riqueza de especies y endemismo'.

Jesús Angel Estrada Ayub, Universidad Autónoma de Chihuahua, México

Maestría en investigación en Ciencias de Ingeniería civil, ambiental y Desarrollo Sustentable de la Universidad Estatal de Arizona y un doctorado en Ciencia de Materiales en el Centro de Investigación en Materiales Avanzados (CIMAV). Jesús Ángel ha publicado en Revistas Arbitradas Internacionales como Environmental Resources and Recycling, y Advances in Materials Science and Engineering en temas relacionados con la ecología Industrial, el medio ambiente Nanotecnolgía y Semiconductores para energía solar fotovoltaica.

Citas

Al-Homoud, M. S. (2001). Computer-aided building energy analysis techniques. Building and Environment, 36(4), 421-433. https://doi.org/10.1016/S0360-1323(00)00026-3

Álvarez-García, G. S., Shah, B., Rubin, F., Gilbert, H., Martin-Domínguez, I. & Shickman, K. (2014). Evaluación del impacto del uso de “Cool Roof” en el ahorro de energía en edificaciones no-residenciales y residenciales en México. Recuperado de https://www.coolrooftoolkit.org/wp-content/uploads/2014/05/Informe-Cool-Roofs-CONUEE-Mayo-22-2014-Espan%CC%83ol.pdf

Alwan, Z., Nawarathna, A., Ayman, R., Zhu, M. & ElGhazi Y. (2021). Framework for parametric assessment of operational and embodied energy impacts utilising BIM. Journal of Building Engineering, 42, 1-15. https://doi.org/10.1016/j.jobe.2021.102768

Akbari, H., Konopacki, S., Parker, D., Wilcox, B., Eley, C. & Van Geem, M. (1998). Calculations in Support of SSP90.1 for Reflective Roofs. ASHRAE Transactions, 104(1B), 984-995.

Akbari, H., Konopacki, S. & Pomerantz, M. (1999). Cooling energy savings potential of reflective roofs for residential and commercial buildings in the United States. Energy, 24(5), 391-407. https://doi.org/10.1016/S0360-5442(98)00105-4

Akbari, H & Levinson, R. (2008). Evolution of Cool-Roof Standards in the US. Advances in Building Energy Research, 2(1), 1-32. https://doi.org/10.3763/aber.2008.0201

Asociación Española de Normalización, UNE. (2020). Informes de Normalización: BIM. Estandarización de la información digital para el proyecto, construcción y gestión de edificios y obras de ingeniería civil. Recuperado de https://www.une.org/normalizacion_documentos/Est%C3%A1ndares%20en%20apoyo%20del%20BIM.pdf

Bojórquez-Morales, G., Luna-León, A., Ruiz-Torres, P., Gómez-Azpeita, G. & García-Cueto, R. (2011). Confort térmico y normatividad. Memorias del XXXV congreso nacional de energía solar, ANES, 369-374.

Bonomolo, M., Di Lisi, S. & Leone, G. (2021). Building Information Modelling and Energy Simulation for Architecture Design. Applied Science,11(5), 1-31. https://doi.org/10.3390/app11052252

California Energy Comission. (2001). Energy Efficiency Standards for Residential and Nonresidential Buildings. P400-01-024. Sacramento, CA.

Calixto-Aguirre, I., Huelsz, G., Barrios, G., Cruz-Salas, M. V. (2021). Validation of thermal simulations of a non-air-conditioned office building in different seasonal, occupancy and ventilation conditions. Journal of Building Engineering, 44, 1-19. https://doi.org/10.1016/j.jobe.2021.102922

Chiu, J. N. W. & Martin V. (2013). Multistage latent heat cold thermal energy storage design analysis. Applied Energy, 112, 1438-1445. https://doi.org/10.1016/j.apenergy.2013.01.054

Clarke, J. A. & Hensen, J. L. M. (2015). Integrated Building Performance Simulation: Progress, Prospects and Requirements. Building and Environment, 91, 294-306. https://doi.org/10.1016/j.buildenv.2015.04.002

Crawley, D. B., (2008). Building Performance Simulation: A Tool for Policymaking. Tesis de Doctorado en Filosofía. Universidad de Strathclyde, Glasgow, Escocia. http://www.esru.strath.ac.uk/Documents/PhD/crawley_thesis.pdf

de Wilde, P. (2018). Building Performance Analysis. Chichester: Wiley-Blackwell. ISBN 978-1-119-34192-5.

Devaux, P. & Farid, M. M. (2017). Benefits of PCM underfloor heating with PCM wallboards for space heating in Winter. Applied Energy, 191, 593-602. https://doi.org/10.1016/j.apenergy.2017.01.060

Fogiatto, M. A., Santos, G. H. & Mendes, N. (2016). Thermal Transmittance Evaluation of Concrete Hollow Blocks. 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, pages 1291-1296.

Gao, Y., Xua, J., Yang, S., Tang, X., Zhou, Q., Ge, J., Xu, T. & Levinson, R. (2014). Cool roofs in China: Policy review, building simulations, and proof-of-concept experiments. Energy Policy, 74, 190-214. https://doi.org/10.1016/j.enpol.2014.05.036

Gao, H., Koch, C. & Wu, Y. (2019). Building information modelling based building energy modelling: A review. Applied Energy, 238, 320-343. https://doi.org/10.1016/j.apenergy.2019.01.032

Gassar, A. A. A., Koo, C., Kim, T. W. & Cha, S.H. (2021) Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review. Sustainability, 13(17), 1-47. https://doi.org/10.3390/su13179815

Halverson, M. A., Stucky, D. J., Fredrich, M., Godoy-Kain, P., Keller, J.M. & Somasundaran, S. (1994). Energy Effective and cost effective building energy conservation measures from Mexico. Pacific NW Laboratory, Richland, Washington.

Han, T., Huang, Q., Zhang, A. & Zhang, Q. (2018). Simulation-Based Decision Support Tools in the Early Design Stages of a Green Building—A Review. Sustainability, 10(10), 1-23. https://doi.org/10.3390/su10103696

Hong, T., Chou, S. K. & Bong, T. Y. (2000). Building simulation: an overview of developments and information sources. Building and Environment, 35(4), 347-361. https://doi.org/10.1016/S0360-1323(99)00023-2

Jeong, S. G., Lee, T. & Lee, J. (2021). Evaluation of Energy Performance and Thermal Comfort Considering the Heat Storage Capacity and Thermal Conductivity of Biocomposite Phase Change Materials. Processes, 9, 1-18. https://doi.org/10.3390/pr9122191

Kamel, E. & Memari, A. M. (2019). Review of BIM's application in energy simulation: Tools, issues, and solutions. Automation in Construction, 97, 164-180. https://doi.org/10.1016/j.autcon.2018.11.008

Kuznik, F., Virgone, J. & Johannes, K. (2010). Development and validation of a new TRNSYS type for the simulation of external building walls containing PCM. Energy and Buildings, 42(7), 1004-1009. https://doi.org/10.1016/j.enbuild.2010.01.012

Levinson R. & Akbari H. (2010). Potential benefits of cool roofs on commercial buildings: conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants. Energy Efficiency, 3, 53-109. https://doi.org/10.1007/s12053-008-9038-2

Lobos, D., Silva-Castillo, L. & Wandersleben, G. (2014). Mapeo de Interoperabilidad entre BIM y BPS Software (Simulación Energética) para Chile. In: Proceedings of the XVII Conference of the Iberoamerican Society of Digital Graphics: Knowledge-based Design. https://doi.org/10.5151/despro-sigradi2013-0072

Østergård, T., Jensen, R. L. & Maagaard, S. E. (2016). Building simulations supporting decision making in early design – A review. Renewable and Sustainable Energy Reviews, 61, 187-201. https://doi.org/10.1016/j.rser.2016.03.045

Lucero-Álvarez, J, Alarcón-Herrera, M. T., Martín-Domínguez, I. R. (2014). The effect of solar reflectance, infrared emissivity, and thermal insulation of roofs on the annual thermal load of single-family households in México. Memoria de Congreso Eurosun 2014, Aix-Les-Bains, Francia.

Lucero-Alvarez, J. (2016). Estudio comparativo de recubrimientos para techos y el efecto sobre el confort humano y uso de energía en México. Tesis doctorado. Centro de Investigación en Materiales Avanzados S. C.

Lucero-Álvarez, J, Rodríguez-Muñoz, N. A., Martín-Domínguez, I. R. (2016). The Effects of Roof and Wall Insulation on the Energy Costs of Low Income Housing in Mexico. Sustainability, 8, 590. https://doi.org/10.3390/su8070590

Lucero-Álvarez, J, Martín-Domínguez, I. R. (2019). The effect of solar reflectance, infrared emissivity, and thermal insulation of roofs on the annual energy consumption of single-family households in México. Indoor and Built Environment, 28, 1, 17–33. https://doi.org/10.1177/1420326X17729194

Mazzocco, M. P., Filippín, C., Sulaiman, H., Flores-Larsen, S. (2018). Performance energética de una vivienda social en Argentina y su rehabilitación basada en simulación térmica. Ambiente Construido, 8(4), 215-235. http://dx.doi.org/10.1590/s1678-86212018000400302

Organismo Nacional de Normalización y Certificación de la Construcción y la Edificación, S. C. (2009). Industria de la construcción –Aislamiento Térmico- Valor “R” para las envolventes de vivienda por zona térmica para la República Mexicana –especificaciones y verificación. (NMX-C460-ONNCCE-2009).

Pérez, J. B., Cabanillas, R. E., Hinojosa, J. F. & Borbón, A. C. (2011). Estudio Numérico de la Resistencia Térmica en Muros de Bloques de Concreto Hueco con Aislamiento Térmico. Información Tecnológica, 22(3), 27-38. http://dx.doi.org/10.4067/S0718-07642011000300005

Royon, L., Karim, L. & Bontemps, A. (2013). Thermal energy storage and release of a new component with PCM for integration in floors for thermal management of buildings. Energy and Buildings, 63, 29-35. https://doi.org/10.1016/j.enbuild.2013.03.042

Samuelson, H., Claussnitzer, S., Goyal, A., Chen, Y. & Romo-Castillo, A. (2016). Parametric Energy Simulation in Early Design: High-Rise Residential Buildings in Urban Contexts. Building and Environment, 101, 19-31. https://doi.org/10.1016/j.buildenv.2016.02.018

Secretaría de Energía. (2011). Eficiencia energetica en edificaciones. Envolvente de edificios para uso habitacional. NOM-020-ENER-2011.

Soares, N., Costa, J. J., Gaspar, A. R. & Santos, P.(2013). Review of passive PCM latent heat thermal energy storage systems towards buildings energy efficiency. Energy Building, 59, 82-103. https://doi.org/10.1016/j.enbuild.2012.12.042

Tabares-Velasco, P. C., Christensen, C. & Bianchi, M. (2012). Verification and validation of EnergyPlus phase change material model for opaque wall assemblies. Building and Environment, 54, 186-196. https://doi.org/10.1016/j.buildenv.2012.02.019

Taha, H. (2008). Meso-urban meteorological and photochemical modeling of heat island mitigation. Atmospheric Environment, 42(38), 8795-8809. https://doi.org/10.1016/j.atmosenv.2008.06.036

Tzempelikos, A. & Lee, S. (2021). Cool Roofs in the US: The Impact of Roof Reflectivity, Insulation and Attachment Method on Annual Energy Cost. Energies, 14(22), 1-17. https://doi.org/10.3390/en14227656

Ulu, M. & Arsan, Z.D. (2020). Retrofit Strategies for Energy Efficiency of Historic Urban Fabric in Mediterranean Climate. Atmosphere, 11(7), 1-33. https://doi.org/10.3390/atmos11070742

U.S. Department of Energy. (2012). 2011 Buildings Energy Data Book. Recuperado de http://192.31.135.76/docs/DataBooks/2011_BEDB.pdf

U.S. Department of Energy. (2021a). About Building Energy Modeling. Recuperado de https://www.energy.gov/eere/buildings/about-building-energy-modeling

U.S. Department of Energy. (2021b). Architecture Firm Perkins&Will “SPEEDs” Up Early-Stage BEM. Recuperado de https://www.energy.gov/eere/buildings/articles/architecture-firm-perkinswill-speeds-early-stage-bem

Publicado

01-07-2022

Cómo citar

Lucero-Alvarez, J., Hernández Quiroz, N. S., & Estrada Ayub, J. A. (2022). Aplicaciones de la modelación energética de edificaciones: revisión y casos de estudio en México. Vivienda Y Comunidades Sustentables, (12), 55–80. https://doi.org/10.32870/rvcs.v0i12.213