APPLICATIONS OF BUILDING ENERGY MODELING: REVIEW AND CASE STUDIES IN MEXICO
DOI:
https://doi.org/10.32870/rvcs.v0i12.213Keywords:
building energy modeling, BIM, TRNSYS , OpenStudio, energy efficiencyAbstract
This paper presents a review of the current utility of software that simulate the energy performance of buildings. The applications of these software have a common purpose: to have buildings that are more efficient in terms of energy consumption. The building energy simulation of the energy can be applied in the early stages of building design or during the remodeling of a building to improve thermal performance. Other applications are to justify or evaluate standards on energy efficiency in buildings, and to evaluate the performance of new materials, construction system or other building components. This paper also presents the results of two research works that were done with different building simulation software. In the first case, A residential building is modelled using the software TRNSYS to evaluate the effect of roof thermal properties on the energy cost. The second case corresponds to the calibration process of a building simulation model made with OpenStudio to evaluate the energy performance of an academic building.Metrics
References
Al-Homoud, M. S. (2001). Computer-aided building energy analysis techniques. Building and Environment, 36(4), 421-433. https://doi.org/10.1016/S0360-1323(00)00026-3
Álvarez-García, G. S., Shah, B., Rubin, F., Gilbert, H., Martin-Domínguez, I. & Shickman, K. (2014). Evaluación del impacto del uso de “Cool Roof” en el ahorro de energía en edificaciones no-residenciales y residenciales en México. Recuperado de https://www.coolrooftoolkit.org/wp-content/uploads/2014/05/Informe-Cool-Roofs-CONUEE-Mayo-22-2014-Espan%CC%83ol.pdf
Alwan, Z., Nawarathna, A., Ayman, R., Zhu, M. & ElGhazi Y. (2021). Framework for parametric assessment of operational and embodied energy impacts utilising BIM. Journal of Building Engineering, 42, 1-15. https://doi.org/10.1016/j.jobe.2021.102768
Akbari, H., Konopacki, S., Parker, D., Wilcox, B., Eley, C. & Van Geem, M. (1998). Calculations in Support of SSP90.1 for Reflective Roofs. ASHRAE Transactions, 104(1B), 984-995.
Akbari, H., Konopacki, S. & Pomerantz, M. (1999). Cooling energy savings potential of reflective roofs for residential and commercial buildings in the United States. Energy, 24(5), 391-407. https://doi.org/10.1016/S0360-5442(98)00105-4
Akbari, H & Levinson, R. (2008). Evolution of Cool-Roof Standards in the US. Advances in Building Energy Research, 2(1), 1-32. https://doi.org/10.3763/aber.2008.0201
Asociación Española de Normalización, UNE. (2020). Informes de Normalización: BIM. Estandarización de la información digital para el proyecto, construcción y gestión de edificios y obras de ingeniería civil. Recuperado de https://www.une.org/normalizacion_documentos/Est%C3%A1ndares%20en%20apoyo%20del%20BIM.pdf
Bojórquez-Morales, G., Luna-León, A., Ruiz-Torres, P., Gómez-Azpeita, G. & García-Cueto, R. (2011). Confort térmico y normatividad. Memorias del XXXV congreso nacional de energía solar, ANES, 369-374.
Bonomolo, M., Di Lisi, S. & Leone, G. (2021). Building Information Modelling and Energy Simulation for Architecture Design. Applied Science,11(5), 1-31. https://doi.org/10.3390/app11052252
California Energy Comission. (2001). Energy Efficiency Standards for Residential and Nonresidential Buildings. P400-01-024. Sacramento, CA.
Calixto-Aguirre, I., Huelsz, G., Barrios, G., Cruz-Salas, M. V. (2021). Validation of thermal simulations of a non-air-conditioned office building in different seasonal, occupancy and ventilation conditions. Journal of Building Engineering, 44, 1-19. https://doi.org/10.1016/j.jobe.2021.102922
Chiu, J. N. W. & Martin V. (2013). Multistage latent heat cold thermal energy storage design analysis. Applied Energy, 112, 1438-1445. https://doi.org/10.1016/j.apenergy.2013.01.054
Clarke, J. A. & Hensen, J. L. M. (2015). Integrated Building Performance Simulation: Progress, Prospects and Requirements. Building and Environment, 91, 294-306. https://doi.org/10.1016/j.buildenv.2015.04.002
Crawley, D. B., (2008). Building Performance Simulation: A Tool for Policymaking. Tesis de Doctorado en Filosofía. Universidad de Strathclyde, Glasgow, Escocia. http://www.esru.strath.ac.uk/Documents/PhD/crawley_thesis.pdf
de Wilde, P. (2018). Building Performance Analysis. Chichester: Wiley-Blackwell. ISBN 978-1-119-34192-5.
Devaux, P. & Farid, M. M. (2017). Benefits of PCM underfloor heating with PCM wallboards for space heating in Winter. Applied Energy, 191, 593-602. https://doi.org/10.1016/j.apenergy.2017.01.060
Fogiatto, M. A., Santos, G. H. & Mendes, N. (2016). Thermal Transmittance Evaluation of Concrete Hollow Blocks. 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, pages 1291-1296.
Gao, Y., Xua, J., Yang, S., Tang, X., Zhou, Q., Ge, J., Xu, T. & Levinson, R. (2014). Cool roofs in China: Policy review, building simulations, and proof-of-concept experiments. Energy Policy, 74, 190-214. https://doi.org/10.1016/j.enpol.2014.05.036
Gao, H., Koch, C. & Wu, Y. (2019). Building information modelling based building energy modelling: A review. Applied Energy, 238, 320-343. https://doi.org/10.1016/j.apenergy.2019.01.032
Gassar, A. A. A., Koo, C., Kim, T. W. & Cha, S.H. (2021) Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review. Sustainability, 13(17), 1-47. https://doi.org/10.3390/su13179815
Halverson, M. A., Stucky, D. J., Fredrich, M., Godoy-Kain, P., Keller, J.M. & Somasundaran, S. (1994). Energy Effective and cost effective building energy conservation measures from Mexico. Pacific NW Laboratory, Richland, Washington.
Han, T., Huang, Q., Zhang, A. & Zhang, Q. (2018). Simulation-Based Decision Support Tools in the Early Design Stages of a Green Building—A Review. Sustainability, 10(10), 1-23. https://doi.org/10.3390/su10103696
Hong, T., Chou, S. K. & Bong, T. Y. (2000). Building simulation: an overview of developments and information sources. Building and Environment, 35(4), 347-361. https://doi.org/10.1016/S0360-1323(99)00023-2
Jeong, S. G., Lee, T. & Lee, J. (2021). Evaluation of Energy Performance and Thermal Comfort Considering the Heat Storage Capacity and Thermal Conductivity of Biocomposite Phase Change Materials. Processes, 9, 1-18. https://doi.org/10.3390/pr9122191
Kamel, E. & Memari, A. M. (2019). Review of BIM's application in energy simulation: Tools, issues, and solutions. Automation in Construction, 97, 164-180. https://doi.org/10.1016/j.autcon.2018.11.008
Kuznik, F., Virgone, J. & Johannes, K. (2010). Development and validation of a new TRNSYS type for the simulation of external building walls containing PCM. Energy and Buildings, 42(7), 1004-1009. https://doi.org/10.1016/j.enbuild.2010.01.012
Levinson R. & Akbari H. (2010). Potential benefits of cool roofs on commercial buildings: conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants. Energy Efficiency, 3, 53-109. https://doi.org/10.1007/s12053-008-9038-2
Lobos, D., Silva-Castillo, L. & Wandersleben, G. (2014). Mapeo de Interoperabilidad entre BIM y BPS Software (Simulación Energética) para Chile. In: Proceedings of the XVII Conference of the Iberoamerican Society of Digital Graphics: Knowledge-based Design. https://doi.org/10.5151/despro-sigradi2013-0072
Østergård, T., Jensen, R. L. & Maagaard, S. E. (2016). Building simulations supporting decision making in early design – A review. Renewable and Sustainable Energy Reviews, 61, 187-201. https://doi.org/10.1016/j.rser.2016.03.045
Lucero-Álvarez, J, Alarcón-Herrera, M. T., Martín-Domínguez, I. R. (2014). The effect of solar reflectance, infrared emissivity, and thermal insulation of roofs on the annual thermal load of single-family households in México. Memoria de Congreso Eurosun 2014, Aix-Les-Bains, Francia.
Lucero-Alvarez, J. (2016). Estudio comparativo de recubrimientos para techos y el efecto sobre el confort humano y uso de energía en México. Tesis doctorado. Centro de Investigación en Materiales Avanzados S. C.
Lucero-Álvarez, J, Rodríguez-Muñoz, N. A., Martín-Domínguez, I. R. (2016). The Effects of Roof and Wall Insulation on the Energy Costs of Low Income Housing in Mexico. Sustainability, 8, 590. https://doi.org/10.3390/su8070590
Lucero-Álvarez, J, Martín-Domínguez, I. R. (2019). The effect of solar reflectance, infrared emissivity, and thermal insulation of roofs on the annual energy consumption of single-family households in México. Indoor and Built Environment, 28, 1, 17–33. https://doi.org/10.1177/1420326X17729194
Mazzocco, M. P., Filippín, C., Sulaiman, H., Flores-Larsen, S. (2018). Performance energética de una vivienda social en Argentina y su rehabilitación basada en simulación térmica. Ambiente Construido, 8(4), 215-235. http://dx.doi.org/10.1590/s1678-86212018000400302
Organismo Nacional de Normalización y Certificación de la Construcción y la Edificación, S. C. (2009). Industria de la construcción –Aislamiento Térmico- Valor “R” para las envolventes de vivienda por zona térmica para la República Mexicana –especificaciones y verificación. (NMX-C460-ONNCCE-2009).
Pérez, J. B., Cabanillas, R. E., Hinojosa, J. F. & Borbón, A. C. (2011). Estudio Numérico de la Resistencia Térmica en Muros de Bloques de Concreto Hueco con Aislamiento Térmico. Información Tecnológica, 22(3), 27-38. http://dx.doi.org/10.4067/S0718-07642011000300005
Royon, L., Karim, L. & Bontemps, A. (2013). Thermal energy storage and release of a new component with PCM for integration in floors for thermal management of buildings. Energy and Buildings, 63, 29-35. https://doi.org/10.1016/j.enbuild.2013.03.042
Samuelson, H., Claussnitzer, S., Goyal, A., Chen, Y. & Romo-Castillo, A. (2016). Parametric Energy Simulation in Early Design: High-Rise Residential Buildings in Urban Contexts. Building and Environment, 101, 19-31. https://doi.org/10.1016/j.buildenv.2016.02.018
Secretaría de Energía. (2011). Eficiencia energetica en edificaciones. Envolvente de edificios para uso habitacional. NOM-020-ENER-2011.
Soares, N., Costa, J. J., Gaspar, A. R. & Santos, P.(2013). Review of passive PCM latent heat thermal energy storage systems towards buildings energy efficiency. Energy Building, 59, 82-103. https://doi.org/10.1016/j.enbuild.2012.12.042
Tabares-Velasco, P. C., Christensen, C. & Bianchi, M. (2012). Verification and validation of EnergyPlus phase change material model for opaque wall assemblies. Building and Environment, 54, 186-196. https://doi.org/10.1016/j.buildenv.2012.02.019
Taha, H. (2008). Meso-urban meteorological and photochemical modeling of heat island mitigation. Atmospheric Environment, 42(38), 8795-8809. https://doi.org/10.1016/j.atmosenv.2008.06.036
Tzempelikos, A. & Lee, S. (2021). Cool Roofs in the US: The Impact of Roof Reflectivity, Insulation and Attachment Method on Annual Energy Cost. Energies, 14(22), 1-17. https://doi.org/10.3390/en14227656
Ulu, M. & Arsan, Z.D. (2020). Retrofit Strategies for Energy Efficiency of Historic Urban Fabric in Mediterranean Climate. Atmosphere, 11(7), 1-33. https://doi.org/10.3390/atmos11070742
U.S. Department of Energy. (2012). 2011 Buildings Energy Data Book. Recuperado de http://192.31.135.76/docs/DataBooks/2011_BEDB.pdf
U.S. Department of Energy. (2021a). About Building Energy Modeling. Recuperado de https://www.energy.gov/eere/buildings/about-building-energy-modeling
U.S. Department of Energy. (2021b). Architecture Firm Perkins&Will “SPEEDs” Up Early-Stage BEM. Recuperado de https://www.energy.gov/eere/buildings/articles/architecture-firm-perkinswill-speeds-early-stage-bem
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Vivienda y Comunidades Sustentables
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The authors who publish in this journal accept the following conditions:
In accordance with the copyright legislation, Sustainable Housing and Communities recognizes and respects the moral right of the authors, as well as the ownership of the patrimonial right, which will be transferred to the University of Guadalajara for its dissemination in open access. Sustainable Housing and Communities does not charge authors for submitting and processing articles for publication. Authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in Sustainable Housing and Communities (for example, include it in an institutional repository or publish it in a book) as long as they clearly indicate that the work is published for the first time in Sustainable Housing and Communities.