Electrified projection of residential energy consumption: Mexico and the global temperature goal of 1.5°C
DOI:
https://doi.org/10.32870/rvcs.v0i12.218Keywords:
residential electricity consumption, Business As Usual (BAU), renewable energies, emissions budget for 1.5° C, MexicoAbstract
National governments agree to keep global warming below 1.5°C to avoid the adverse effects of climate change. However, its promises to reduce emissions at COP26 exceed this objective by 60%. 65% of global GHG emissions are produced by household consumption, with residential energy consumption being one of the largest emitters. The objective is to analyze the trends of residential energy consumption in Mexico, and compare them with two residential energy electrification scenarios, compatible with the 1.5°C budget. A Business As Usual (BAU) scenario was projected by analyzing residential energy consumption for the 2005-2019 period, and comparing its GHG emissions with the 1.5°C budget of the Low Energy Demand (LED) trajectory. The electrification of the other two scenarios was calculated by converting the energy consumption projected in the BAU scenario to electrical energy, ensuring that the emissions factor of the national electricity system (SEN) was compatible with the LED trajectory. The results indicate that current trends would exceed the budget as of 2033, exceeding it by 374% at the end of the century. While the electrification scenarios would require the SEN emissions factor to decrease exponentially from the current 0.494 tCO2e/MWh to 0.108 tCO2e/MWh in 2100. These results make evident the need to introduce the issue of the 1.5°C emissions budget to the discussion of the electricity reform initiative, to ensure that Mexico's energy policies are in accordance with international agreements on the matter.Metrics
References
Akenji, L., Lettenmeier, M., Toivio, V., Koide, R., y Amellina, A. (2019). 1.5-Degree Lifestyles: Targets and Options for Reducing Lifestyle Carbon Footprints. Technical Report. Institute for Global Environmental Strategies. https://www.iges.or.jp/en/pub/15-degrees-lifestyles-2019/en
Akinyele, D. O., y Rayudu, R. K. (2014). Review of energy storage technologies for sustainable power networks. Sustainable Energy Technologies and Assessments, núm. 8, pp. 74-91. https:// doi.org/10.1016/j.seta.2014.07.004
Berrueta, V. (2007). Evaluación energética del des- empeño de dispositivos para la cocción con leña. Tesis doctoral. Universidad Autónoma de México. https://ru.dgb.unam.mx/handle/dgbunam/tes01000627381
Bieker, G. (2021, julio). A global comparison of the life-cycle greenhouse gas emissions of combustion engine and electric passenger cars. https:// theicct.org/publications/global-LCA-passenger-cars-jul2021
Bustamante, O., y Rampone, G. (2013). Huella de carbono del Ministerio de Agricultura, Alimentación y Medio Ambiente. Oficina Española de Cambio Climático. https://www.miteco.gob.es/ es/cambio-climatico/publicaciones/documentos-de-interes/huella_carbono_2012_tcm30- 178331.pdf
Cámara de Diputados. (2021). Iniciativa de Decreto por el que se reforman los artículos 25, 27 y 28 de la Constitución Política de los Estados Unidos Mexicanos. http://gaceta.diputados.gob. mx/pdf/65/2021/oct/20211001-I.pdf#page=2
Carrillo, E. (2021). Cumpliremos metas de energías limpias con hidroeléctricas, dice AMLO ante John Kerry. Forbes. https://www.forbes.com.mx/politica-cumpliremos-metas-de-energias-limpias-con-hidroelectricas-amlo/
Cruz, I. (2016). Emisiones de CO2 en hogares urbanos. El caso del Distrito Federal. Estudios Demográficos y Urbanos, 31(1): 115-142. https://doi.org/10.24201/edu.v31i1.1505
Davis, L. (2021). What Matters for Electrification? Evidence from 70 Years of U. S. Home Heating Choices. NBER. https://doi.org/10.3386/w28324
Energy Sector Management Assistance Program. (2015). Mexico’s Power Sector Transition: Pumped Storage Hydropower to Facilitate Renewable Energy Integration. https://esmap.org/ node/71023
Gould, C. F., Schlesinger, S., Toasa, A. O., Thurber, M., Waters, W. F., Graham, J. P., y Jack, D. W. (2018). Government policy, clean fuel access, and persistent fuel stacking in Ecuador. Energy for Sustainable Development, núm. 46, pp. 111-122. https://doi.org/10.1016/j.esd.2018.05.009
Grubler, A., Wilson, C., Bento, N., Boza-Kiss, B., Krey, V., McCollum, D. L., Rao, N. D., Riahi, K., Rogelj, J., De Stercke, S., Cullen, J., Frank, S., Fricko, O., Guo, F., Gidden, M., Havlík, P., Hu- ppmann, D., Kiesewetter, G., Rafaj, P., ... y Valin, H. (2018a). A low energy demand scenario for meeting the 1.5° C target and sustainable development goals without negative emission technologies. Nature Energy, 3(6): 515-527. https:// doi.org/10.1038/s41560-018-0172-6
——. (2018b). A low energy demand scenario for meeting the 1.5° C target and sustainable development goals without negative emission technologies. Nature Energy, 3(6): 515-527. https:// doi.org/10.1038/s41560-018-0172-6
Gutiérrez-Meave, R., Rosellón, J., y Sarmiento, L. (2021). The effect of changing marginal-cost to physical-order dispatch in the power sector. Deutsches Institut für Wirtschaftsforschung (diw) http://hdl.handle.net/10419/235763
Hernández-Garduño, E., Gómez-García, E., y Campos-Gómez, S. (2017). Prevalence trends of wood use as the main cooking fuel in Mexico, 1990-2013. Salud Pública de México, 59(1): 68. https://doi.org/10.21149/7770
Hunt, J. D., Byers, E., Wada, Y., Parkinson, S., Gernaat, D. E. H. J., Langan, S., van Vuuren, D. P., y Riahi, K. (2020). Global resource potential of seasonal pumped hydropower storage for energy and water storage. Nature Communications, 11(1): 947. https://doi.org/10.1038/s41467-020- 14555-y
Huppmann, D., Kriegler, E., Krey, V., Riahi, K., Rogelj, J., Calvin, K., Humpenoeder, F., Popp, A., Rose, S. K., Weyant, J., Bauer, N., Bertram, C., Bosetti, V., Doelman, J., Drouet, L., Emmer- ling, J., Frank, S., Fujimori, S., Gernaat, D., ... y Zhang, R. (2019, agosto 8). IAMC 1.5° C Scenario Explorer and Data hosted by IIASA (Version release 2.0) [Data set]. Integrated Assessment Modeling Consortium/International Institute for Applied Systems Analysis. https://doi. org/10.5281/zenodo.3363345
Instituto Nacional de Ecología y Cambio Climático. (2014). Factores de emisión para los diferentes tipos de combustibles fósiles y alternativos que se consumen en México. https://www.gob. mx/cms/uploads/attachment/file/110131/cgcc- dbc_2014_fe_tipos_combustibles_fosiles.pdf
——. (2020). Potential of storage technologies in Mexico. https://ens.dk/sites/ens.dk/files/Glo- balcooperation/potential_of_storage_techno- logies_in_mexico.pdf
Instituto Nacional de Ecología y Cambio Climático. (2020). Potential of storage technologies in Mexico. https://ens.dk/sites/ens.dk/files/Globalcooperation/potential_of_storage_technologies_in_mexico.pdf
Instituto de Planeación y Gestión del Desarrollo del Área Metropolitana de Guadalajara. (s/f). Plan de Acción Climática del Área Metropolitana de Guadalajara. https://drive.google.com/file/d/1f- tegzzaa-lthdq8cjwn62wdahstazpp6/view
Ivanova, D., Stadler, K., Steen-Olsen, K., Wood, R., Vita, G., Tukker, A., y Hertwich, E. G. (2016). Environmental Impact Assessment of Household Consumption. Journal of Industrial Ecology, 20(3): 526-536. https://doi.org/10.1111/jiec.12371
Karanfil, F., y Li, Y. (2017). The Role of Continuous Intraday Electricity Markets: The Integration of Large-Share Wind Power Generation in Denmark. The Energy Journal, 38(2): 107-130. https://doi.org/10.5547/01956574.38.2.fkar
Kaytez, F., Taplamacioglu, M. C., Cam, E., y Hardalac, F. (2015). Forecasting electricity consump- tion: A comparison of regression analysis, neural networks and least squares support vector machines. International Journal of Electrical Power & Energy Systems, núm. 67, pp. 431-438. https://doi.org/10.1016/j.ijepes.2014.12.036
Krebs, L., Frischknecht, R., y Stolz, P. (2020). Envi- ronmental Life Cycle Assessment of Residential pv and Battery Storage Systems 2020 pvps Task 12 pv Sustainability. https://iea-pvps.org/wpcontent/uploads/2020/07/iea_pvps_task12_ lca_pvandstorage.pdf
Lagunes Díaz, E., González Ávila, M. E., y Ortega Rubio, A. (2015). Transición de leña a gas licua- do a presión (GLP) en el sur de México, oportunidad para la mitigación del cambio climático en la región menos desarrollada del país. Acta Universitaria, 25(6): 30-42. https://doi. org /10.15174 /au.2015.853
Lenton, T. M., Rockström, J., Gaffney, O., Rahm- storf, S., Richardson, K., Steffen, W., y Schelln- huber, H. J. (2019). Climate tipping points — too risky to bet against. Nature, 575(7784): 592-595. https://doi.org/10.1038/d41586-019-03595-0
Márquez de la Cruz, G., Andrade Vallejo, M. A., y Peña Cruz, M. D. P. (2016). Reforma energética en México: Los subsidios eléctricos y su impacto en las finanzas públicas. Oikos, 19(40): 151. http://ediciones.ucsh.cl/index.php/Oikos/ article/view/977
Matson, W. (1983). Kerosene Space Heaters, octubre. https://ir.library.oregonstate.edu/down- loads/ht24wk03r
Organización de las Naciones Unidas (ONU). (2015). Convención Marco de las Naciones Unidas sobre el Cambio Climático. (2015). Acuerdo de París Naciones Unidas 2015. https://unfccc.int/files/essential_background/convention/application/pdf/spanish_paris_agreement.pdf
Secretaría de Energía. (2020). Balance nacional de energía: Principales indicadores energéticos y de hidrocarburos. https://www.datos.gob. mx/busca/dataset/balance-nacional-de-energia-principales-indicadores-energeticos-y-de-hidrocarburos
——. (2021a). Programa de Desarrollo del Sistema Eléctrico Nacional 2021-2035. https://www.gob. mx/sener/articulos/programa-para-el-desarrollo-del-sistema-electrico-nacional https://www.gob.mx/sener/articulos/programa-para-el-desarrollo-del-sistema-electrico-nacional
——. (2021b). Sistema de Información Energética. https://sie.energia.gob.mx/bdicontroller.do?ac- tion=cuadro&cvecua=dips_se_c33_esp
Secretaría de Medio Ambiente y Recursos Naturales. (2021). Registro Nacional de Emisiones. https://www.gob.mx/semarnat/acciones-y-programas/registro-nacional-de-emisiones-rene
Sheather, J. (2021). The conflicts that killed cop26. BMJj, núm. 2798. https://doi.org/10.1136/bmj. n2798
Smil, V. (2016). Examining energy transitions: A dozen insights based on performance. Energy Research & Social Science, núm. 22, pp. 194-197. https://doi.org/10.1016/j.erss.2016.08.017
Steffen, W., Rockström, J., Richardson, K., Lenton, T. M., Folke, C., Liverman, D., Summerhayes, C. P., Barnosky, A. D., Cornell, S. E., Crucifix, M., Donges, J. F., Fetzer, I., Lade, S. J., Scheffer, M., Winkelmann, R., & Schellnhuber, H. J. (2018). Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences, 115(33), 8252–8259. https://doi.org/10.1073/pnas.1810141115
The Intergovernmental Panel on Climate Change. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (S. Solo- mon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, y H. L. Miller (eds.). Cambridge United Press. https://www.ipcc.ch/ report/ar4 /wg1/
——. (2018). Global Warming of 1.5° C. An IPCC Special Report on the impacts of global warming of 1.5° C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. https:// www.ipcc.ch/sr15/
Tiandho, Y., Indriawati, A., Putri, A. K., y Afriani, F. (2021). Induction stoves: An option for clean and efficient cooking in Indonesia. IOP Conference Series: Materials Science and Engineering, 1034(1): 012068. https://doi.org/10.1088/1757- 899X/1034 /1 /012068
Vita, G. (2019). Energía y carbono en el consumo de los hogares mexicanos: Una perspectiva integrada del metabolismo socioeconómico y necesidades humanas fundamentales. En: W. Tijerina, G. Vita, y J. Berlanga (eds.), Perspectivas globales para la transición energética de México (pp. 67-76). UANL-Fondo Editorial de Nuevo León. https://ssrn.com/abstract=3497822
Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C., y Scheffer, M. (2020). Future of the human climate niche. Proceedings of the National Academy of Sciences, 117(21): 11350-11355. https://doi. org/10.1073/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Vivienda y Comunidades Sustentables
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The authors who publish in this journal accept the following conditions:
In accordance with the copyright legislation, Sustainable Housing and Communities recognizes and respects the moral right of the authors, as well as the ownership of the patrimonial right, which will be transferred to the University of Guadalajara for its dissemination in open access. Sustainable Housing and Communities does not charge authors for submitting and processing articles for publication. Authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in Sustainable Housing and Communities (for example, include it in an institutional repository or publish it in a book) as long as they clearly indicate that the work is published for the first time in Sustainable Housing and Communities.