Electrified projection of residential energy consumption: Mexico and the global temperature goal of 1.5°C

Authors

DOI:

https://doi.org/10.32870/rvcs.v0i12.218

Keywords:

residential electricity consumption, Business As Usual (BAU), renewable energies, emissions budget for 1.5° C, Mexico

Abstract

National governments agree to keep global warming below 1.5°C to avoid the adverse effects of climate change. However, its promises to reduce emissions at COP26 exceed this objective by 60%. 65% of global GHG emissions are produced by household consumption, with residential energy consumption being one of the largest emitters. The objective is to analyze the trends of residential energy consumption in Mexico, and compare them with two residential energy electrification scenarios, compatible with the 1.5°C budget. A Business As Usual (BAU) scenario was projected by analyzing residential energy consumption for the 2005-2019 period, and comparing its GHG emissions with the 1.5°C budget of the Low Energy Demand (LED) trajectory. The electrification of the other two scenarios was calculated by converting the energy consumption projected in the BAU scenario to electrical energy, ensuring that the emissions factor of the national electricity system (SEN) was compatible with the LED trajectory. The results indicate that current trends would exceed the budget as of 2033, exceeding it by 374% at the end of the century. While the electrification scenarios would require the SEN emissions factor to decrease exponentially from the current 0.494 tCO2e/MWh to 0.108 tCO2e/MWh in 2100. These results make evident the need to introduce the issue of the 1.5°C emissions budget to the discussion of the electricity reform initiative, to ensure that Mexico's energy policies are in accordance with international agreements on the matter.

Metrics

Metrics Loading ...

Author Biographies

Christian Hernández Cardenas, University of Guadalajara, Mexico

Student of the Doctorate in City, Territory and Sustainability of the University of Guadalajara (2019-2022). Master in Sustainable Projects and Building by ITESO (2016-2018). Architect by the ITESM campus Guadalajara (2002-2007). Since 2019 he has been a subject professor at ITESO, advising as an expert in the area of ​​construction with alternative materials and low environmental impact. In addition, it has collaborated with the IMEPLAN for the elaboration of the complementary technical norms for construction with wood of the Metropolitan Area of ​​Guadalajara.  

David Carlos Ávila Ramírez, University of Guadalajara, Mexico

Student of the Doctorate in City, Territory and Sustainability of the University of Guadalajara (2019-2022). Master in Sustainable Projects and Building by ITESO (2016-2018). Architect by the ITESM campus Guadalajara (2002-2007). Since 2019 he has been a subject professor at ITESO, advising as an expert in the area of ​​construction with alternative materials and low environmental impact. In addition, it has collaborated with the IMEPLAN for the elaboration of the complementary technical norms for construction with wood of the Metropolitan Area of ​​Guadalajara.

References

Akenji, L., Lettenmeier, M., Toivio, V., Koide, R., y Amellina, A. (2019). 1.5-Degree Lifestyles: Targets and Options for Reducing Lifestyle Carbon Footprints. Technical Report. Institute for Global Environmental Strategies. https://www.iges.or.jp/en/pub/15-degrees-lifestyles-2019/en

Akinyele, D. O., y Rayudu, R. K. (2014). Review of energy storage technologies for sustainable power networks. Sustainable Energy Technologies and Assessments, núm. 8, pp. 74-91. https:// doi.org/10.1016/j.seta.2014.07.004

Berrueta, V. (2007). Evaluación energética del des- empeño de dispositivos para la cocción con leña. Tesis doctoral. Universidad Autónoma de México. https://ru.dgb.unam.mx/handle/dgbunam/tes01000627381

Bieker, G. (2021, julio). A global comparison of the life-cycle greenhouse gas emissions of combustion engine and electric passenger cars. https:// theicct.org/publications/global-LCA-passenger-cars-jul2021

Bustamante, O., y Rampone, G. (2013). Huella de carbono del Ministerio de Agricultura, Alimentación y Medio Ambiente. Oficina Española de Cambio Climático. https://www.miteco.gob.es/ es/cambio-climatico/publicaciones/documentos-de-interes/huella_carbono_2012_tcm30- 178331.pdf

Cámara de Diputados. (2021). Iniciativa de Decreto por el que se reforman los artículos 25, 27 y 28 de la Constitución Política de los Estados Unidos Mexicanos. http://gaceta.diputados.gob. mx/pdf/65/2021/oct/20211001-I.pdf#page=2

Carrillo, E. (2021). Cumpliremos metas de energías limpias con hidroeléctricas, dice AMLO ante John Kerry. Forbes. https://www.forbes.com.mx/politica-cumpliremos-metas-de-energias-limpias-con-hidroelectricas-amlo/

Cruz, I. (2016). Emisiones de CO2 en hogares urbanos. El caso del Distrito Federal. Estudios Demográficos y Urbanos, 31(1): 115-142. https://doi.org/10.24201/edu.v31i1.1505

Davis, L. (2021). What Matters for Electrification? Evidence from 70 Years of U. S. Home Heating Choices. NBER. https://doi.org/10.3386/w28324

Energy Sector Management Assistance Program. (2015). Mexico’s Power Sector Transition: Pumped Storage Hydropower to Facilitate Renewable Energy Integration. https://esmap.org/ node/71023

Gould, C. F., Schlesinger, S., Toasa, A. O., Thurber, M., Waters, W. F., Graham, J. P., y Jack, D. W. (2018). Government policy, clean fuel access, and persistent fuel stacking in Ecuador. Energy for Sustainable Development, núm. 46, pp. 111-122. https://doi.org/10.1016/j.esd.2018.05.009

Grubler, A., Wilson, C., Bento, N., Boza-Kiss, B., Krey, V., McCollum, D. L., Rao, N. D., Riahi, K., Rogelj, J., De Stercke, S., Cullen, J., Frank, S., Fricko, O., Guo, F., Gidden, M., Havlík, P., Hu- ppmann, D., Kiesewetter, G., Rafaj, P., ... y Valin, H. (2018a). A low energy demand scenario for meeting the 1.5° C target and sustainable development goals without negative emission technologies. Nature Energy, 3(6): 515-527. https:// doi.org/10.1038/s41560-018-0172-6

——. (2018b). A low energy demand scenario for meeting the 1.5° C target and sustainable development goals without negative emission technologies. Nature Energy, 3(6): 515-527. https:// doi.org/10.1038/s41560-018-0172-6

Gutiérrez-Meave, R., Rosellón, J., y Sarmiento, L. (2021). The effect of changing marginal-cost to physical-order dispatch in the power sector. Deutsches Institut für Wirtschaftsforschung (diw) http://hdl.handle.net/10419/235763

Hernández-Garduño, E., Gómez-García, E., y Campos-Gómez, S. (2017). Prevalence trends of wood use as the main cooking fuel in Mexico, 1990-2013. Salud Pública de México, 59(1): 68. https://doi.org/10.21149/7770

Hunt, J. D., Byers, E., Wada, Y., Parkinson, S., Gernaat, D. E. H. J., Langan, S., van Vuuren, D. P., y Riahi, K. (2020). Global resource potential of seasonal pumped hydropower storage for energy and water storage. Nature Communications, 11(1): 947. https://doi.org/10.1038/s41467-020- 14555-y

Huppmann, D., Kriegler, E., Krey, V., Riahi, K., Rogelj, J., Calvin, K., Humpenoeder, F., Popp, A., Rose, S. K., Weyant, J., Bauer, N., Bertram, C., Bosetti, V., Doelman, J., Drouet, L., Emmer- ling, J., Frank, S., Fujimori, S., Gernaat, D., ... y Zhang, R. (2019, agosto 8). IAMC 1.5° C Scenario Explorer and Data hosted by IIASA (Version release 2.0) [Data set]. Integrated Assessment Modeling Consortium/International Institute for Applied Systems Analysis. https://doi. org/10.5281/zenodo.3363345

Instituto Nacional de Ecología y Cambio Climático. (2014). Factores de emisión para los diferentes tipos de combustibles fósiles y alternativos que se consumen en México. https://www.gob. mx/cms/uploads/attachment/file/110131/cgcc- dbc_2014_fe_tipos_combustibles_fosiles.pdf

——. (2020). Potential of storage technologies in Mexico. https://ens.dk/sites/ens.dk/files/Glo- balcooperation/potential_of_storage_techno- logies_in_mexico.pdf

Instituto Nacional de Ecología y Cambio Climático. (2020). Potential of storage technologies in Mexico. https://ens.dk/sites/ens.dk/files/Globalcooperation/potential_of_storage_technologies_in_mexico.pdf

Instituto de Planeación y Gestión del Desarrollo del Área Metropolitana de Guadalajara. (s/f). Plan de Acción Climática del Área Metropolitana de Guadalajara. https://drive.google.com/file/d/1f- tegzzaa-lthdq8cjwn62wdahstazpp6/view

Ivanova, D., Stadler, K., Steen-Olsen, K., Wood, R., Vita, G., Tukker, A., y Hertwich, E. G. (2016). Environmental Impact Assessment of Household Consumption. Journal of Industrial Ecology, 20(3): 526-536. https://doi.org/10.1111/jiec.12371

Karanfil, F., y Li, Y. (2017). The Role of Continuous Intraday Electricity Markets: The Integration of Large-Share Wind Power Generation in Denmark. The Energy Journal, 38(2): 107-130. https://doi.org/10.5547/01956574.38.2.fkar

Kaytez, F., Taplamacioglu, M. C., Cam, E., y Hardalac, F. (2015). Forecasting electricity consump- tion: A comparison of regression analysis, neural networks and least squares support vector machines. International Journal of Electrical Power & Energy Systems, núm. 67, pp. 431-438. https://doi.org/10.1016/j.ijepes.2014.12.036

Krebs, L., Frischknecht, R., y Stolz, P. (2020). Envi- ronmental Life Cycle Assessment of Residential pv and Battery Storage Systems 2020 pvps Task 12 pv Sustainability. https://iea-pvps.org/wpcontent/uploads/2020/07/iea_pvps_task12_ lca_pvandstorage.pdf

Lagunes Díaz, E., González Ávila, M. E., y Ortega Rubio, A. (2015). Transición de leña a gas licua- do a presión (GLP) en el sur de México, oportunidad para la mitigación del cambio climático en la región menos desarrollada del país. Acta Universitaria, 25(6): 30-42. https://doi. org /10.15174 /au.2015.853

Lenton, T. M., Rockström, J., Gaffney, O., Rahm- storf, S., Richardson, K., Steffen, W., y Schelln- huber, H. J. (2019). Climate tipping points — too risky to bet against. Nature, 575(7784): 592-595. https://doi.org/10.1038/d41586-019-03595-0

Márquez de la Cruz, G., Andrade Vallejo, M. A., y Peña Cruz, M. D. P. (2016). Reforma energética en México: Los subsidios eléctricos y su impacto en las finanzas públicas. Oikos, 19(40): 151. http://ediciones.ucsh.cl/index.php/Oikos/ article/view/977

Matson, W. (1983). Kerosene Space Heaters, octubre. https://ir.library.oregonstate.edu/down- loads/ht24wk03r

Organización de las Naciones Unidas (ONU). (2015). Convención Marco de las Naciones Unidas sobre el Cambio Climático. (2015). Acuerdo de París Naciones Unidas 2015. https://unfccc.int/files/essential_background/convention/application/pdf/spanish_paris_agreement.pdf

Secretaría de Energía. (2020). Balance nacional de energía: Principales indicadores energéticos y de hidrocarburos. https://www.datos.gob. mx/busca/dataset/balance-nacional-de-energia-principales-indicadores-energeticos-y-de-hidrocarburos

——. (2021a). Programa de Desarrollo del Sistema Eléctrico Nacional 2021-2035. https://www.gob. mx/sener/articulos/programa-para-el-desarrollo-del-sistema-electrico-nacional https://www.gob.mx/sener/articulos/programa-para-el-desarrollo-del-sistema-electrico-nacional

——. (2021b). Sistema de Información Energética. https://sie.energia.gob.mx/bdicontroller.do?ac- tion=cuadro&cvecua=dips_se_c33_esp

Secretaría de Medio Ambiente y Recursos Naturales. (2021). Registro Nacional de Emisiones. https://www.gob.mx/semarnat/acciones-y-programas/registro-nacional-de-emisiones-rene

Sheather, J. (2021). The conflicts that killed cop26. BMJj, núm. 2798. https://doi.org/10.1136/bmj. n2798

Smil, V. (2016). Examining energy transitions: A dozen insights based on performance. Energy Research & Social Science, núm. 22, pp. 194-197. https://doi.org/10.1016/j.erss.2016.08.017

Steffen, W., Rockström, J., Richardson, K., Lenton, T. M., Folke, C., Liverman, D., Summerhayes, C. P., Barnosky, A. D., Cornell, S. E., Crucifix, M., Donges, J. F., Fetzer, I., Lade, S. J., Scheffer, M., Winkelmann, R., & Schellnhuber, H. J. (2018). Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences, 115(33), 8252–8259. https://doi.org/10.1073/pnas.1810141115

The Intergovernmental Panel on Climate Change. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (S. Solo- mon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, y H. L. Miller (eds.). Cambridge United Press. https://www.ipcc.ch/ report/ar4 /wg1/

——. (2018). Global Warming of 1.5° C. An IPCC Special Report on the impacts of global warming of 1.5° C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. https:// www.ipcc.ch/sr15/

Tiandho, Y., Indriawati, A., Putri, A. K., y Afriani, F. (2021). Induction stoves: An option for clean and efficient cooking in Indonesia. IOP Conference Series: Materials Science and Engineering, 1034(1): 012068. https://doi.org/10.1088/1757- 899X/1034 /1 /012068

Vita, G. (2019). Energía y carbono en el consumo de los hogares mexicanos: Una perspectiva integrada del metabolismo socioeconómico y necesidades humanas fundamentales. En: W. Tijerina, G. Vita, y J. Berlanga (eds.), Perspectivas globales para la transición energética de México (pp. 67-76). UANL-Fondo Editorial de Nuevo León. https://ssrn.com/abstract=3497822

Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C., y Scheffer, M. (2020). Future of the human climate niche. Proceedings of the National Academy of Sciences, 117(21): 11350-11355. https://doi. org/10.1073/

Published

2022-07-01

How to Cite

Hernández Cardenas, C., & Ávila Ramírez, D. C. (2022). Electrified projection of residential energy consumption: Mexico and the global temperature goal of 1.5°C. Vivienda Y Comunidades Sustentables, (12), 81–94. https://doi.org/10.32870/rvcs.v0i12.218