Optimización morfológica de cañones urbanos con diseño evolutivo para mitigar la isla urbana de calor

Authors

  • Nayeli Montserrat Castrejón Esparza Universidad Autonoma de Baja California, Mexico
  • Marcos Eduardo Gonzalez Trevizo Universidad Autonoma de Baja California, Mexico
  • Jorge Armando Ojeda Sanchez Universidad de Colima, Mexico

DOI:

https://doi.org/10.32870/rvcs.v0i13.224

Keywords:

evolutionary algorithms, urban overheating, urban heat island, urban canyon, mitigation strategies

Abstract

This study analyzes at the microscale level and under a quantitative approach, the morphological optimization of an urban canyon based on its geometric aspect ratio as a mitigation strategy for an urban heat island, through evolutionary design algorithmic techniques. In the initial stages of the study, the use of interpolated climatic information was used, which allowed the modeling of a typical meteorological year for a dry temperate microclimate. The results obtained show a significant potential for obstruction to solar access due to a higher aspect ratio (h/w>2) as a result of vertical densification, which promoted a decrease in the Universal Thermal Comfort Index (UTCI) of up to 2°C: from 35°C to 33°C to the center of the canyon due to the increase in the projection of shadows by taller buildings; likewise, the total amount of solar radiation that reaches the geometric center of the canyon surface is re- reduced from 6.39 to 4 kWh/m2, which represents a decrease of 2.3 kWh/m2 and the hours of available sunlight decreased from 11:00 hours to 7:00 hours., which represents up to four hours less direct sunlight to the center of the canyon, providing thermally cooler urban environments. However, it is important to mention that studies must be carried out over a year to analyze the effect of a higher aspect ratio on the surface temperature of the ground during cold days in the city; likewise, carry out fluid mechanics analysis in the different morphological composition scenarios given that taller buildings are expected to affect wind patterns in the area.  

Metrics

Metrics Loading ...

Author Biographies

Nayeli Montserrat Castrejón Esparza, Universidad Autonoma de Baja California, Mexico

Maestra en Arquitectura, Urbanismo y Diseño, Universidad Autónoma de Baja California, México, sus áreas de investigación son: Arquitectura, Medio Ambiente.

Jorge Armando Ojeda Sanchez, Universidad de Colima, Mexico

Research professor at the Faculty of Architecture and Design, University of Colima. Research Area: Heat Transfer.

References

Abdollahzadeh, N., y Biloria, N. (2021). Outdoor thermal comfort: Analyzing the impact of urban configurations on the thermal performance of street canyons in the humid subtropical climate of Sydney. Frontiers of Architectural Re- search, 10(2): 394-409. https://doi.org/10.1016/j. foar.2020.11.006

Barrera, C. (2010). Algoritmos genéticos como estrate- gia de diseño en arquitectura (p. 258). http://li- brary1.nida.ac.th/termpaper6/sd/2554/19755.pdf

Battista, G., de Lieto Vollaro, R., y Zinzi, M. (2019). Assessment of urban overheating mitigation strategies in a square in Rome, Italy. Solar Energy, núm. 180, enero, pp. 608-621. https://doi. org/10.1016/j.solener.2019.01.074

Berdahl, P., Chen, S. S., Destaillats, H., Kirchstetter, T. W., Levinson, R. M., y Zalich, M. A. (2016). Fluorescent cooling of objects exposed to sunlight: The ruby example. Solar Energy Materials and Solar Cells, núm. 157, pp. 312-317. https://doi. org/10.1016/j.solmat.2016.05.058

Chen, L., Ng, E., An, X., Ren, C., Lee, M., Wang, U., y He, Z. (2012). Sky view factor analysis of street canyons and its implications for daytime in-tra-urban air temperature differentials in high- rise, high-density urban areas of Hong Kong: A GIS-based simulation approach. International Journal of Climatology, 32(1): 121-136. https://doi.org/10.1002/joc.2243

Davis, D. (2013, febrero). Modelled on Software Engineering: Flexible Parametric Models in the Prac- tice of Architecture. https://ap-st01.ext.exlibris- group.com/61rmit_inst/storage/alma/c8/88/54/e6/31/f8/fd/a8/2f/59/9a/e5/3a/c3/a9/9c/davis. pdf ?expires=1626069818&signature=krvucq- jikvw63lst-5hcpzvgmluut4en5~83o~knnhgs3p- 8cpi5akr~uwnxka~5b5l3~z0arb3dc~qea2ylky3g- fu4fblwkdjuomafpw-

Deb, K., Pratap, A., Agarwal, S., y Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolu- tionary Computation, 6(2): 182-197. https://doi. org/10.1109/4235.996017

Deng, J. Y., y Wong, N. H. (2020). Impact of urban canyon geometries on outdoor thermal comfort in central business districts. Sustainable Cities and Society, núm. 53, pp. 101-966. https://doi. org/10.1016/j.scs.2019.101966

Emmanuel, R., y Krüger, E. (2012). Urban heat is- land and its impact on climate change resilience in a shrinking city: The case of Glasgow, uk. Building and Environment, núm. 53, pp. 137-149. https://doi.org/10.1016/j.buildenv.2012.01.020

Fink, T., Koenig, R., y Weimar, U. (2018). Integrated Parametric Urban Design in Grasshopper / Rhi- noceros 3D Demonstrated on a Master Plan in Vienna, núm. 3, pp. 313-322.

Fiorito, F., Cannavale, A., y Santamouris, M. (2020). Development, testing and evaluation of energy savings potentials of photovoltachromic windows in office buildings. A perspective study for Australian climates. Solar Energy, núm. 205, febrero, pp. 358-371. https://doi.org/10.1016/j.so- lener.2020.05.080

García, E. (2004). Modificaciones al sistema de clasificacion climatica de Köppen (5a edición). Méxi- co: Universidad Nacional Autónoma de México.

Garshasbi, S., y Santamouris, M. (2019). Using ad- vanced thermochromic technologies in the built environment: Recent development and potential to decrease the energy consumption and fight urban overheating. Solar Energy Materials and Solar Cells, núm. 191, octubre, pp. 21-32. https://doi.org/10.1016/j.solmat.2018.10.023

INEGI. (2001). Sistema de informacion geografica del estado de Baja California, vol. I. México:INEGI.

IPCC. (2013). Cambio climático. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Re- port of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/up- loads/2018/03/wg1ar5_summaryvolume_fi- nal_spanish.pdf

Karssenberg, Laven, J., Glaser, M., y Van’t Hoff, M. (2018). The city at eye level. (M. G. y M. van ‘t H. Hans Karssenberg, Jeroen Laven; Ebu- ron). https://thecityateyelevel.files.wordpress. com/2016/02/ebook_the-city-at-eye-level_english.pdf

Luke, S. (2015). Essentials of metaheuristics. Morrisville, 2(3). https://doi.org/10.1007/s10710-011- 9139-0

Lutyens, D. (2019). Mitigar el calentamiento urbano. http://www.rocagallery.com/es/mitigating-ur- ban-heat-islands?fbclid=iwar0k8gwnffzkabock- iwswlkvaulubtjivqvn8aanikstyh_kqcd5y-yfyf4

Makki, M., Showkatbakhsh, M., Tabony, A., y Wein- stock, M. (2019). Evolutionary algorithms for generating urban morphology: Variations and multiple objectives. International Journal of Architectural Computing, 17(1): 5-35. https://doi. org /10.1177/1478077118777236

Manni, M., Bonamente, E., Lobaccaro, G., Goia, F., Nicolini, A., Bozonnet, E., y Rossi, F. (2020). Development and validation of a Monte Carlo-based numerical model for solar analyses in urban canyon configurations. Building and Environment, núm. 170, noviembre, pp. 106-638. https://doi.org/10.1016/j.buildenv.2019.106638

Manni, M., Lobaccaro, G., Goia, F., Nicolini, A., y Rossi, F. (2019). Exploiting selective angular properties of retro-reflective coatings to miti- gate solar irradiation within the urban canyon. Solar Energy, núm. 189, abril, pp. 74-85. https:// doi.org/10.1016/j.solener.2019.07.045

Navarro-Mateu, D., Makki, M., y Cocho-Bermejo, A. (2018). Urban-tissue optimization through evolutionary computation. Mathematics, 6(10). https://doi.org/10.3390/math6100189

Ng, E., y Cheng, V. (2012). Urban human thermal comfort in hot and humid Hong Kong. Energy and Buildings, núm. 55, pp. 51-65. https://doi. org/10.1016/j.enbuild.2011.09.025

Oke, T. R. (1987). Boundary layer climates. (2a edición).

——. (1988). Street Design and Urban Canopy Layer Climate, núm. 11, pp. 103-113.

Park, C. Y., Yoon, E. J., Lee, D. K., y Thorne, J. H. (2020). Integrating four radiant heat load mit- igation strategies is an efficient intervention to improve human health in urban environ- ments. Science of the Total Environment, núm. 698, pp. 134-259. https://doi.org/10.1016/j.scito- tenv.2019.134259

POEBC. (2014). Programa de Ordenamiento Ecologico del Estado de Baja California. Consejo Estatal de Proteccion al Ambiente del Estado de Baja California, núm. 34, pp. 1-434. http://www. spabc.gob.mx/wp-content/uploads/2018/04/ documento-completo-poebc-2014.pdf

Sakar, B. (2018). Parametric Modelling for the Miti- gation of Urban Heat, agosto.

Santamouris, M. (2015). Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Science of the Total Environment, núm. 512-513, pp. 582-598. https://doi.org/10.1016/j.scito- tenv.2015.01.060

Santamouris, M., Ding, L., Fiorito, F., Oldfield, P., Osmond, P., Paolini, R., Prasad, D., y Synnefa, A. (2017). Passive and active cooling for the out- door built environment: Analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Solar Energy, núm. 154, pp. 14-33. https://doi.org/10.1016/j.solener.2016.12.006

Santamouris, M., y Fiorito, F. (2021). On the impact of modified urban albedo on ambient tem- perature and heat related mortality. Solar En- ergy, núm. 216, enero, pp. 493-507. https://doi. org/10.1016/j.solener.2021.01.031

Santamouris, M., y Yun, G. Y. (2020). Recent de- velopment and research priorities on cool and super cool materials to mitigate urban heat is- land. Renewable Energy, núm. 161, pp. 792-807. https://doi.org/10.1016/j.renene.2020.07.109

Semadet, J. (2006). Cambio climático. Adv. Mater., núm. 4, p. 116. https://semadet.jalisco.gob.mx/ sites/semadet.jalisco.gob.mx/files/cambio_climatico.pdf

Showkatbakhsh, M., y Makki, M. (2020). Application of homeostatic principles within evolutionary design processes: Adaptive urban tissues. Journal of Computational Design and Engineering, 7(1): 1-17. https://doi.org/10.1093/jcde/qwaa002

Shukla, A. K., Sudhakar, K., y Baredar, P. (2017). Recent advancement in bipv product technol- ogies: A review. Energy and Buildings, núm. 140, pp. 188-195. https://doi.org/10.1016/j.en- build.2017.02.015

Suyoto, W., Indraprastha, A., y Purbo, H. W. (2015). Parametric Approach as a Tool for Deci- sion-making in Planning and Design Process. Case study: Office Tower in Kebayoran Lama. Procedia - Social and Behavioral Sciences, núm. 184, agosto, pp. 328-337. https://doi.org/10.1016/j. sbspro.2015.05.098

Tsoka,S.,Tsikaloudaki,K.,yTheodosiou,T.(2020). Investigation Methods and Mitigation.

Vardoulakis, S., Fisher, B. E. A., Pericleous, K., Var- doulakis, S., Fisher, B. E. A., Pericleous, K., y Modelling, N. G. (2014). Modelling air quality in street canyons: A review.

Published

2023-01-01

How to Cite

Castrejón Esparza, N. M., Gonzalez Trevizo, M. E. ., & Ojeda Sanchez, J. A. . (2023). Optimización morfológica de cañones urbanos con diseño evolutivo para mitigar la isla urbana de calor. Vivienda Y Comunidades Sustentables, (13), 133–157. https://doi.org/10.32870/rvcs.v0i13.224

Most read articles by the same author(s)