Optimización morfológica de cañones urbanos con diseño evolutivo para mitigar la isla urbana de calor
DOI:
https://doi.org/10.32870/rvcs.v0i13.224Keywords:
evolutionary algorithms, urban overheating, urban heat island, urban canyon, mitigation strategiesAbstract
This study analyzes at the microscale level and under a quantitative approach, the morphological optimization of an urban canyon based on its geometric aspect ratio as a mitigation strategy for an urban heat island, through evolutionary design algorithmic techniques. In the initial stages of the study, the use of interpolated climatic information was used, which allowed the modeling of a typical meteorological year for a dry temperate microclimate. The results obtained show a significant potential for obstruction to solar access due to a higher aspect ratio (h/w>2) as a result of vertical densification, which promoted a decrease in the Universal Thermal Comfort Index (UTCI) of up to 2°C: from 35°C to 33°C to the center of the canyon due to the increase in the projection of shadows by taller buildings; likewise, the total amount of solar radiation that reaches the geometric center of the canyon surface is re- reduced from 6.39 to 4 kWh/m2, which represents a decrease of 2.3 kWh/m2 and the hours of available sunlight decreased from 11:00 hours to 7:00 hours., which represents up to four hours less direct sunlight to the center of the canyon, providing thermally cooler urban environments. However, it is important to mention that studies must be carried out over a year to analyze the effect of a higher aspect ratio on the surface temperature of the ground during cold days in the city; likewise, carry out fluid mechanics analysis in the different morphological composition scenarios given that taller buildings are expected to affect wind patterns in the area.Metrics
References
Abdollahzadeh, N., y Biloria, N. (2021). Outdoor thermal comfort: Analyzing the impact of urban configurations on the thermal performance of street canyons in the humid subtropical climate of Sydney. Frontiers of Architectural Re- search, 10(2): 394-409. https://doi.org/10.1016/j. foar.2020.11.006
Barrera, C. (2010). Algoritmos genéticos como estrate- gia de diseño en arquitectura (p. 258). http://li- brary1.nida.ac.th/termpaper6/sd/2554/19755.pdf
Battista, G., de Lieto Vollaro, R., y Zinzi, M. (2019). Assessment of urban overheating mitigation strategies in a square in Rome, Italy. Solar Energy, núm. 180, enero, pp. 608-621. https://doi. org/10.1016/j.solener.2019.01.074
Berdahl, P., Chen, S. S., Destaillats, H., Kirchstetter, T. W., Levinson, R. M., y Zalich, M. A. (2016). Fluorescent cooling of objects exposed to sunlight: The ruby example. Solar Energy Materials and Solar Cells, núm. 157, pp. 312-317. https://doi. org/10.1016/j.solmat.2016.05.058
Chen, L., Ng, E., An, X., Ren, C., Lee, M., Wang, U., y He, Z. (2012). Sky view factor analysis of street canyons and its implications for daytime in-tra-urban air temperature differentials in high- rise, high-density urban areas of Hong Kong: A GIS-based simulation approach. International Journal of Climatology, 32(1): 121-136. https://doi.org/10.1002/joc.2243
Davis, D. (2013, febrero). Modelled on Software Engineering: Flexible Parametric Models in the Prac- tice of Architecture. https://ap-st01.ext.exlibris- group.com/61rmit_inst/storage/alma/c8/88/54/e6/31/f8/fd/a8/2f/59/9a/e5/3a/c3/a9/9c/davis. pdf ?expires=1626069818&signature=krvucq- jikvw63lst-5hcpzvgmluut4en5~83o~knnhgs3p- 8cpi5akr~uwnxka~5b5l3~z0arb3dc~qea2ylky3g- fu4fblwkdjuomafpw-
Deb, K., Pratap, A., Agarwal, S., y Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolu- tionary Computation, 6(2): 182-197. https://doi. org/10.1109/4235.996017
Deng, J. Y., y Wong, N. H. (2020). Impact of urban canyon geometries on outdoor thermal comfort in central business districts. Sustainable Cities and Society, núm. 53, pp. 101-966. https://doi. org/10.1016/j.scs.2019.101966
Emmanuel, R., y Krüger, E. (2012). Urban heat is- land and its impact on climate change resilience in a shrinking city: The case of Glasgow, uk. Building and Environment, núm. 53, pp. 137-149. https://doi.org/10.1016/j.buildenv.2012.01.020
Fink, T., Koenig, R., y Weimar, U. (2018). Integrated Parametric Urban Design in Grasshopper / Rhi- noceros 3D Demonstrated on a Master Plan in Vienna, núm. 3, pp. 313-322.
Fiorito, F., Cannavale, A., y Santamouris, M. (2020). Development, testing and evaluation of energy savings potentials of photovoltachromic windows in office buildings. A perspective study for Australian climates. Solar Energy, núm. 205, febrero, pp. 358-371. https://doi.org/10.1016/j.so- lener.2020.05.080
García, E. (2004). Modificaciones al sistema de clasificacion climatica de Köppen (5a edición). Méxi- co: Universidad Nacional Autónoma de México.
Garshasbi, S., y Santamouris, M. (2019). Using ad- vanced thermochromic technologies in the built environment: Recent development and potential to decrease the energy consumption and fight urban overheating. Solar Energy Materials and Solar Cells, núm. 191, octubre, pp. 21-32. https://doi.org/10.1016/j.solmat.2018.10.023
INEGI. (2001). Sistema de informacion geografica del estado de Baja California, vol. I. México:INEGI.
IPCC. (2013). Cambio climático. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Re- port of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/up- loads/2018/03/wg1ar5_summaryvolume_fi- nal_spanish.pdf
Karssenberg, Laven, J., Glaser, M., y Van’t Hoff, M. (2018). The city at eye level. (M. G. y M. van ‘t H. Hans Karssenberg, Jeroen Laven; Ebu- ron). https://thecityateyelevel.files.wordpress. com/2016/02/ebook_the-city-at-eye-level_english.pdf
Luke, S. (2015). Essentials of metaheuristics. Morrisville, 2(3). https://doi.org/10.1007/s10710-011- 9139-0
Lutyens, D. (2019). Mitigar el calentamiento urbano. http://www.rocagallery.com/es/mitigating-ur- ban-heat-islands?fbclid=iwar0k8gwnffzkabock- iwswlkvaulubtjivqvn8aanikstyh_kqcd5y-yfyf4
Makki, M., Showkatbakhsh, M., Tabony, A., y Wein- stock, M. (2019). Evolutionary algorithms for generating urban morphology: Variations and multiple objectives. International Journal of Architectural Computing, 17(1): 5-35. https://doi. org /10.1177/1478077118777236
Manni, M., Bonamente, E., Lobaccaro, G., Goia, F., Nicolini, A., Bozonnet, E., y Rossi, F. (2020). Development and validation of a Monte Carlo-based numerical model for solar analyses in urban canyon configurations. Building and Environment, núm. 170, noviembre, pp. 106-638. https://doi.org/10.1016/j.buildenv.2019.106638
Manni, M., Lobaccaro, G., Goia, F., Nicolini, A., y Rossi, F. (2019). Exploiting selective angular properties of retro-reflective coatings to miti- gate solar irradiation within the urban canyon. Solar Energy, núm. 189, abril, pp. 74-85. https:// doi.org/10.1016/j.solener.2019.07.045
Navarro-Mateu, D., Makki, M., y Cocho-Bermejo, A. (2018). Urban-tissue optimization through evolutionary computation. Mathematics, 6(10). https://doi.org/10.3390/math6100189
Ng, E., y Cheng, V. (2012). Urban human thermal comfort in hot and humid Hong Kong. Energy and Buildings, núm. 55, pp. 51-65. https://doi. org/10.1016/j.enbuild.2011.09.025
Oke, T. R. (1987). Boundary layer climates. (2a edición).
——. (1988). Street Design and Urban Canopy Layer Climate, núm. 11, pp. 103-113.
Park, C. Y., Yoon, E. J., Lee, D. K., y Thorne, J. H. (2020). Integrating four radiant heat load mit- igation strategies is an efficient intervention to improve human health in urban environ- ments. Science of the Total Environment, núm. 698, pp. 134-259. https://doi.org/10.1016/j.scito- tenv.2019.134259
POEBC. (2014). Programa de Ordenamiento Ecologico del Estado de Baja California. Consejo Estatal de Proteccion al Ambiente del Estado de Baja California, núm. 34, pp. 1-434. http://www. spabc.gob.mx/wp-content/uploads/2018/04/ documento-completo-poebc-2014.pdf
Sakar, B. (2018). Parametric Modelling for the Miti- gation of Urban Heat, agosto.
Santamouris, M. (2015). Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Science of the Total Environment, núm. 512-513, pp. 582-598. https://doi.org/10.1016/j.scito- tenv.2015.01.060
Santamouris, M., Ding, L., Fiorito, F., Oldfield, P., Osmond, P., Paolini, R., Prasad, D., y Synnefa, A. (2017). Passive and active cooling for the out- door built environment: Analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Solar Energy, núm. 154, pp. 14-33. https://doi.org/10.1016/j.solener.2016.12.006
Santamouris, M., y Fiorito, F. (2021). On the impact of modified urban albedo on ambient tem- perature and heat related mortality. Solar En- ergy, núm. 216, enero, pp. 493-507. https://doi. org/10.1016/j.solener.2021.01.031
Santamouris, M., y Yun, G. Y. (2020). Recent de- velopment and research priorities on cool and super cool materials to mitigate urban heat is- land. Renewable Energy, núm. 161, pp. 792-807. https://doi.org/10.1016/j.renene.2020.07.109
Semadet, J. (2006). Cambio climático. Adv. Mater., núm. 4, p. 116. https://semadet.jalisco.gob.mx/ sites/semadet.jalisco.gob.mx/files/cambio_climatico.pdf
Showkatbakhsh, M., y Makki, M. (2020). Application of homeostatic principles within evolutionary design processes: Adaptive urban tissues. Journal of Computational Design and Engineering, 7(1): 1-17. https://doi.org/10.1093/jcde/qwaa002
Shukla, A. K., Sudhakar, K., y Baredar, P. (2017). Recent advancement in bipv product technol- ogies: A review. Energy and Buildings, núm. 140, pp. 188-195. https://doi.org/10.1016/j.en- build.2017.02.015
Suyoto, W., Indraprastha, A., y Purbo, H. W. (2015). Parametric Approach as a Tool for Deci- sion-making in Planning and Design Process. Case study: Office Tower in Kebayoran Lama. Procedia - Social and Behavioral Sciences, núm. 184, agosto, pp. 328-337. https://doi.org/10.1016/j. sbspro.2015.05.098
Tsoka,S.,Tsikaloudaki,K.,yTheodosiou,T.(2020). Investigation Methods and Mitigation.
Vardoulakis, S., Fisher, B. E. A., Pericleous, K., Var- doulakis, S., Fisher, B. E. A., Pericleous, K., y Modelling, N. G. (2014). Modelling air quality in street canyons: A review.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Vivienda y Comunidades Sustentables
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The authors who publish in this journal accept the following conditions:
In accordance with the copyright legislation, Sustainable Housing and Communities recognizes and respects the moral right of the authors, as well as the ownership of the patrimonial right, which will be transferred to the University of Guadalajara for its dissemination in open access. Sustainable Housing and Communities does not charge authors for submitting and processing articles for publication. Authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in Sustainable Housing and Communities (for example, include it in an institutional repository or publish it in a book) as long as they clearly indicate that the work is published for the first time in Sustainable Housing and Communities.