VALIDATION OF THE WINTER THERMAL PERFORMANCE OF A SOCIAL HOUSING MODEL
DOI:
https://doi.org/10.32870/rvcs.v0i15.253Keywords:
Dwelling; Architectural envelope; Energy consumption; Thermal performance; Regulations; Energy simulationAbstract
In Mexico, there is a high demand for housing, which has led to the mass production of buildings using cost-effective construction systems and materials that reduce construction time; however, this has resulted in thermal, energy, and comfort deficiencies in the living spaces. One factor that determines electrical energy consumption is the architectural envelope. This research aimed to evaluate the thermal performance of a low-income housing unit built using a formwork system coated with a nano thermal blocker. The study was conducted in Ensenada, Baja California, Mexico, during winter, in a climate classified as Bsk (dry Mediterranean). Temperature and relative humidity data were recorded and analyzed. DesignBuilder®? with an EnergyPlus calculation engine was used to ensure model accuracy and precision. The validation of the model corresponds to a value of 1.053 root mean square error. The house's thermal performance is not ideal. The southwest room experiences the most significant temperature drop of 0.60°C, with a thermal lag of three hours. The thermal resistance didn’t comply with the standard. Factors affecting winter thermal performance were material properties, space orientation, and nano thermal blockers. The limited availability of measurement equipment was a fundamental research limitation.Metrics
References
Al-Obaidi, K. M., Ismail, M., & Abdul Rahman, A. M. (2014). Passive cooling techniques through reflective and radiative roofs in tropical houses in Southeast Asia: A literature review. Frontiers of Architectural Research, 3(3), 283–297. https://doi.org/10.1016/j.foar.2014.06.002
Al-tamimi, N. (2022). Passive Design Strategies for Energy Efficient Buildings in the Arabian Desert. Frontiers in Built Environment, 7, 805603. https://doi.org/10.3389/fbuil.2021.805603
Al-yasiri, Q., & Szabó, M. (2021). Experimental evaluation of the optimal position of a macroencapsulated phase change material incorporated composite roof under hot climate conditions. Sustainable Energy Technologies and Assessments, 45(March), 101121. https://doi.org/10.1016/j.seta.2021.101121
Al-yasiri, Q., & Szabó, M. (2022). Energetic and thermal comfort assessment of phase change material passively incorporated building envelope in severe hot Climate?: An experimental study. Applied Energy, 314(January), 118957. https://doi.org/10.1016/j.apenergy.2022.118957
Albatayneh, A. (2021). Optimisation of building envelope parameters in a semi-arid and warm Mediterranean climate zone. Energy Reports, 7, 2081–2093. https://doi.org/10.1016/j.egyr.2021.04.011
Alchapar, N. L., Correa, E. N., & Cantón, M. A. (2012). Índice De Reflectancia Solar De Revestimientos Verticales: Potencial Para La Mitigación De La Isla De Calor Urbana. Ambiente Construído, 12(3), 107–123. https://doi.org/10.1590/s1678-86212012000300008
Ali, M. H., & Abustan, I. (2014). A new novel index for evaluating model performance. Journal of Natural Resources and Development, 2002, 1–9. https://doi.org/10.5027/jnrd.v4i0.01
Alías, H. M., & Jacobo, G. J. (2011). Eficiencia energética en viviendas sociales. Incidencia de la envolvente en el consumo eléctrico para mantener el bienestar higrotérmico en los espacios interiores. Arquisur, 1, 76–89. https://doi.org/10.14409/ar.v1i1.925
Álvarez, J. L., Hernández Quiroz, N. S., & Estrada Ayub, J. A. (2022). Aplicaciones de la modelación energética de edificaciones: revisión y casos de estudio en México. Vivienda y Comunidades Sustentables, 12.
Andoni, H., & Wonorahardjo, S. (2018). A Review on Mitigation Technologies for Controlling Urban Heat Island Effect in Housing and Settlement Areas. IOP Conference Series: Earth and Environmental Science, 152(1). https://doi.org/10.1088/1755-1315/152/1/012027
Barrios, G., Huelsz, G., Rechtman, R., & Rojas, J. (2011). Wall / roof thermal performance differences between air-conditioned and non air-conditioned rooms. Energy & Buildings, 43(1), 219–223. https://doi.org/10.1016/j.enbuild.2010.09.015
Barrios, G., Huelsz, G., Rojas, J., Ochoa, J. M., & Marincic, I. (2012). Envelope wall/roof thermal performance parameters for non air-conditioned buildings. Energy and Buildings, 50, 120–127. https://doi.org/10.1016/j.enbuild.2012.03.030
Becerra-Santacruz, H., & Lawrence, R. (2016). Evaluation of the thermal performance of an industrialised housing construction system in a warm-temperate climate: Morelia, Mexico. Building and Environment, 107, 135–153. https://doi.org/10.1016/j.buildenv.2016.07.029
Berrocal, D., Aranda, R., Santamaría, S., Vigil, A., & Chen, M. A. (2022). El cambio de fase como estrategia pasiva: Evaluación del rendimiento térmico-energético en edificaciones en Panamá. I+D Tecnológico, 17(2). https://doi.org/10.33412/idt.v17.2.3478
Bhargava, A., Lakmini, S., & Bhargava, S. (2017). Urban Heat Island Effect: It’s Relevance in Urban Planning. Journal of Biodiversity & Endangered Species, 05(02), 1–4. https://doi.org/10.4172/2332-2543.1000187
Borbon-Almada, A. C., Lucero-Alvarez, J., Rodriguez-Muñoz, N. A., Ramirez-Celaya, M., Castro-Brockman, S., Sau-Soto, N., & Najera-Trejo, M. (2020). Design and application of cellular concrete on a mexican residential building and its influence on energy savings in hot climates: Projections to 2050. Applied Sciences (Switzerland), 10(22), 1–22. https://doi.org/10.3390/app10228225
CONAFOVI. (2006). Guia para el Uso eficiente de la energia en la vivienda. In Bosque.
CONUEE, C. N. para el uso E. de E. (2017). Costos y beneficios de la norma mexicana para envolvente de edificaciones residenciales (NOM-020- ENER). 1–24. https://www.gob.mx/cms/uploads/attachment/file/234755/Impacto_NOM-020-junio-2017-FINAL.pdf
CONUEE, C. N. para el uso E. de E. (2020). Eficiencia energética en el confort térmico en viviendas de clima cálido en México. Cuadernos de La Conuee, 5.
Daioglou, V., Mikropoulos, E., Gernaat, D., & Vuuren, D. P. Van. (2022). Efficiency improvement and technology choice for energy and emission reductions of the residential sector. Energy, 243, 122994. https://doi.org/10.1016/j.energy.2021.122994
DOF - Diario Oficial de la Federación. (2009). Norma Mexicana NMX-C-460-0NNCCE-2009, Industria de la construcción-Aislamiento Térmico-Valor “R” para las envolventes de viviendas por zona térmica para la república Mexicana-Especificaciones y verificación".
El, F., Lafhaj, Z., Antczak, E., & Chapiseau, C. (2016). Dynamic thermal performance of three types of unfired earth bricks. Applied Thermal Engineering, 93, 377–383. https://doi.org/10.1016/j.applthermaleng.2015.09.009
Fu, S. C., Zhong, X. L., Zhang, Y., Lai, T. W., Chan, K. C., Lee, K. Y., & Chao, C. Y. H. (2020). Bio-inspired cooling technologies and the applications in buildings. Energy and Buildings, 225, 110313. https://doi.org/10.1016/j.enbuild.2020.110313
GABC, G. A. for B. and C. (2018). 2018 Global Status Report: Towards a zero-emission, efficient and resilient buildings and construction sector.
González, E. (2004). Seleccion De Materiales En La Concepcion Arquitectonica Bioclimática. In Estudios de Arquitectura Bioclimática. Anuario 2004: Vol. January (p. 351564413).
Gunawardena, K. R., Mccullen, N., & Kershaw, T. (2017). Heat island influence on space-conditioning loads of urban and suburban office buildings. Cities and Climate Conference 2017, 1–13.
Jannat, N., Hussien, A., Abdullah, B., & Cotgrave, A. (2020). A comparative simulation study of the thermal performances of the building envelope wall materials in the tropics. Sustainability, 12(12), 4892. https://doi.org/10.3390/SU12124892
Lodete, T., Arns, G., & Marcelino, R. (2020). Impact Analysis of Bioclimatic Strategies on the Thermoenergetic Performance of a Pilot Plant in Southern Brazil. Journal of Energy Engineering, 146(5), 05020003. https://doi.org/10.1061/(asce)ey.1943-7897.0000704
Magadán, T. R., Laredo, C. G., Suarez, G. A., Cacabelos, Reyes Antón, Carrasco, P. P. J., & Álavarez, F. M. Á. (2016). Simulación mediante TRNSYS de la influencia de la envolvente térmica en la demanda energética en un Cuartel de la Armada y propuestas de actuación. IV Congreso Nacional de I+D En Defensa y Seguridad 2016, 322630705.
Morales-Inzunza, S., González-Trevizo, M. E., Martínez-Torres, K. E., Luna-León, A., Tamayo-Pérez, U. J., Fernández-Melchor, F., & Santamouris, M. (2023). On the potential of cool materials in the urban heat island context: Scalability challenges and technological setbacks towards building decarbonization. Energy and Buildings, 296(July). https://doi.org/10.1016/j.enbuild.2023.113330
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Vivienda y Comunidades Sustentables
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The authors who publish in this journal accept the following conditions:
In accordance with the copyright legislation, Sustainable Housing and Communities recognizes and respects the moral right of the authors, as well as the ownership of the patrimonial right, which will be transferred to the University of Guadalajara for its dissemination in open access. Sustainable Housing and Communities does not charge authors for submitting and processing articles for publication. Authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in Sustainable Housing and Communities (for example, include it in an institutional repository or publish it in a book) as long as they clearly indicate that the work is published for the first time in Sustainable Housing and Communities.