Optimization of Electrical Energy Consumption for Cooling in CAPFCE School Buildings Located in Hot-Dry Climates
DOI:
https://doi.org/10.32870/rvcs.v0i19.330Keywords:
Electricity consumption, Hot-dry climate, CAPFCE school buildings, Energy simulation, Thermal envelope, Air conditioning, User usage patternsAbstract
This study identifies the optimal electrical consumption of cooling systems in five buildings located on the Hermosillo Campus of the Universidad de Sonora, Mexico. These buildings were constructed under the guidelines of the Mexican agency known as the Committee for the Administration of the Federal Program for School Construction (CAPFCE). Originally designed for temperate climates, these buildings were implemented nationwide without consideration for regional climatic conditions. Simulations were conducted using OpenStudio Software with thermostat settings at 17?°C, 24?°C, and 28?°C, evaluating five scenarios: modifications to the building envelope, occupancy levels, lighting systems, door/window openings, and combined strategies. The simulations were validated on-site using a thermographic camera and environmental sensors. Annual values of total and sensible cooling loads were obtained, along with the average indoor operative temperature. Results for the month of August indicated that initial energy consumption without strategies ranged from 26.45 to 12.68 kWh/m². The building envelope accounted for 74–78% of the load, occupants for 20–25%, and lighting, ventilation, and infiltration for less than 2%. After implementing energy-saving strategies, consumption decreased to 22.36–11.42 kWh/m². The most significant reduction was achieved through equipment efficiency improvements (up to 13.26%), followed by wall insulation (1.75%), roof insulation (0.71%), double-glazed windows (0.03%), and optimized ventilation and lighting (1.19%). Increasing the thermostat temperature from 17?°C to 28?°C reduced energy consumption by 25–28%, with greater impact observed in buildings with higher baseline consumption.References
Alfaoyzan, F.A.; Almasri, R.A. (2023) Benchmarking of Energy Consumption in Higher Education Buildings in Saudi Arabia to Be Sustainable: Sulaiman Al-Rajhi University Case. Energies, 16, 1204. https://doi.org/10.3390/ en16031204
Lucero-Alvarez, J., Hernández Quiroz, N. S., & Estrada Ayub, J. A. (2022). Aplicaciones de la modelación energética de edificaciones: revisión y casos de estudio en México. Vivienda Y Comunidades Sustentables, (12), 55–80. https://doi.org/10.32870/rvcs.v0i12.213
American Society of Heating, Refrigerating and Air-Conditioning Engineers. (2010). ASHRAE Standard 90.0-2010: Energy standard for buildings except low-rise residential buildings. ASHRAE.
Balvedi, B.F; Schaefer, A; Bavaresco, M.V; Eccel, J. V. & Ghisi, E. (2018). Identificação de perfis de comportamento do usuário para edificações residenciais multifamiliares e naturalmente ventiladas em Florianópolis. Ambiente Construído, 18(3), 149-160. DOI: https://doi.org/10.1590/s1678-86212018000300273
Bravo, D. y Pérez, Y. (2016). Eficiencia energética en la climatización de edificaciones. Revista Publicando, 3(8), 218-238.
https://revistapublicando.org/revista/index.php/crv/article/view/228
Castro, F; San José, J. F, Villafruela, J. M; Méndez, C. y Guijarro, A. (2008). Mejora de la ventilación de una habitación de Hospital. Ingeniería Hospitalaria, 37: 1-7.
Comisión Nacional para el Uso Eficiente de la Energía. (2018). Diseño y adaptación de envolventes de edificios. Sistemas vidriados eficientes y acabados reflejantes. CONUEE. Recuperado de: https://www.gob.mx/cms/uploads/attachment/file/359816/CONUEE_-_Taller_Envolventes__AR_y_SV_.pdf
Fluke Corporation. (s.f.). SmartView®. Recuperado de https://www.fluke.com/es-mx/productos/infraestructura/inspeccion-termografica/smartview-software
Fuentes, C. (2016). Calificación ambiental de la vivienda. Estrategias de adaptabilidad higrotérmica. Nova scientia, 8(16), 278-312. Recuperado de: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-07052016000100278
Gollini-Mihalopoulos, C., Berbey-Alvarez, A., & Henríquez, F. (2023). Análisis energético del edificio N°1 de la Universidad Tecnológica de Panamá: simulación y optimización del consumo de energía eléctrica a través de soluciones de eficiencia energética. Tecnología en marcha, 36(1), 140-151. Recuperado de https://www.redalyc.org/journal/6998/699877376008/html/
González, M. R. y Molina, L.F. (2017). Envolvente arquitectónica: Un espacio para la sostenibilidad. Arkitekturax Visión FUA, 1(1), 49-62. Recuperado de: https://revistas.uamerica.edu.co/index.php/ark/article/download/201/188
Guerrero, C. A; Suárez, J. M. y Gutiérrez, L. E. (2013). Patrones de Diseño GOF (The Gang of Four) en el contexto de Procesos de Desarrollo de Aplicaciones Orientadas a la Web. Información Tecnológica, 24(3), 103-114. Recuperado de: https://scielo.conicyt.cl/pdf/infotec/v24n3/art12.pdf
López, M. (2011). Hospitales eficientes: Una Revisión del consumo energético óptimo (Tesis doctoral). Universidad de Salamanca, España. Recuperado de: https://dialnet.unirioja.es/servlet/tesis?codigo=104268
Marincic, I. (2005). Edificios educativos: Recomendaciones para mejorar su eficiencia térmica. Hermosillo, Sonora: Universidad de Sonora.
National Renewable Energy Laboratory. (s.f.). OpenStudio. https://www.openstudio.net/
Quevedo, T.C., Geraldi, M.S., Melo, A.P., Lamberts, R. (2024) Benchmarking energy consumption in universities: A review, Journal of Building Engineering, Volume 82,108185, ISSN 2352-7102, https://doi.org/10.1016/j.jobe.2023.108185.
Rueda, C., y Rentería, I. (2017). Educación y arquitectura: Centros Regionales de Educación Normal en México, 1960. ARQUITECTURAS DEL SUR, 35(52), 104–115. https://doi.org/10.22320/07196466.2017.35.052.10
Trimble Inc. (s.f.). SketchUp. Recuperado de https://www.sketchup.com
United Nations Environment Programme. (2017). Accelerating the Global Adoption of ENERGY-EFFICIENT AND CLIMATE-FRIENDLY AIR CONDITIONER. Recuperado de:https://united4efficiency.org/resources/accelerating-global-adoption-energy-efficient-air-conditioners
Universidad Nacional Autónoma de México. (2014). Ener-Habitat v2.2.0 [Software]. Instituto de Energías Renovables. http://enerhabitat.unam.mx/Cie2/index.jsp
Varini C., Simulaciones: Luciani S. (2015). Calidad de vida en la vivienda social de San Andrés, Colombia, mediante la gestión bioclimática de ?ujos de aire. Revista Nodo, 9(19), pp. 101-110
Yeomans, A. V., Alpuche, M. G., & Borbón, A. C. (2025). Influencia de los patrones de uso en sistemas de enfriamiento y envolvente térmica en la habitabilidad de espacios educativos. Sobre los procesos del proyecto arquitectónico (pp. 41-70). Qartuppi.
Zapata, M. (2011). Elementos y referencias para la formación. Revista de Educación a Distancia, 24 (3), 103-104. Recuperado de http://dx.doi.org/10.4067/S0718-076420130003000
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Vivienda y Comunidades Sustentables

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The authors who publish in this journal accept the following conditions:
In accordance with the copyright legislation, Sustainable Housing and Communities recognizes and respects the moral right of the authors, as well as the ownership of the patrimonial right, which will be transferred to the University of Guadalajara for its dissemination in open access. Sustainable Housing and Communities does not charge authors for submitting and processing articles for publication. Authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in Sustainable Housing and Communities (for example, include it in an institutional repository or publish it in a book) as long as they clearly indicate that the work is published for the first time in Sustainable Housing and Communities.
