Relationship between energy performance of buildings and urban morphology: densification as a climate change mitigation strategy

Authors

DOI:

https://doi.org/10.32870/rvcs.v0i12.194

Keywords:

urban

Abstract

Currently, more than half of the world population live in cities (United Nations, 2021), and an increase in energy use in housing services is expected. Furthermore, cities are characterized by dispersed growth (urban sprawl), therefore, as a corrective measure the urban densification stra- tegy is introduced by city planners. The objective of this research is to analyze the impact of this strategy on Energy Use Intensity (eui) of homes in the arid climate and its relationship with den- sity parameters to substantiate the viability and improve the analysis and decision-making tools for the design of resilient cities. This study evaluates the use of air conditio- ning and heating through the selection of an urban analysis sample in Hermosillo, Sonora, from which densified hypothetical scenarios are generated and simulated through Energy Plus calculation tool. Finally, the results show the morphological parameters most closely related to consumption and indicate that the strategy can reduce eui by up to 37%. It is worth mentioning that the definition of the scenarios represents only a very small fraction of the almost infinite combination of parameters (geometry, climate, etc.) and is limited to the study of a single case. The research has a contribution in the development of city planning strategies, especially for those with an arid climate. In addition, also evaluates different levels of densification using common parameters and validates through an experimental methodology.

Metrics

Metrics Loading ...

Author Biographies

Fátima Anahí Córdova Borbón, University of Sonora, Mexico

Bachelor of Architecture at Tec CSN, where he participated in an international program in the city of Curitiba, in Brazil, at the PUCP. Degree of specialty in the Unison in Energy and Environment in Architecture. Master's degree from the upc in Barcelona, ​​in Architecture, Energy and Environment. Collaborator since 2014 at the Tecnológico de Monterrey as a professor, collaborating on subjects related to bioclimatic architecture, energy efficiency and projects. Appointment of Secretary General in the College of Architects of the City of Hermosillo; doctoral student in Humanities in the line of architecture at Unison.    

María Guadalupe Alpuche Cruz, University of Sonora, Mexico

Doctorate in Engineering, Specialist in Bioclimatic Design, Energy Research Center, National Autonomous University of Mexico. Full-time Professor-Researcher, Department of Architecture and Design, University of Sonora, from 2005 to date. Honorable Mention in the Bachelor of Architecture exam. Honorable Mention in the Master of Architecture degree exam, member of the National System of Researchers, CONACYT, Level I, recognition of Full-Time Professors with Desirable Profile, PRODEP-SEP.  

References

Agencia Danesa de Energía, y Low Carbon Archi- tecture. (2017). Catálago de tecnologías. Tec- nologías energéticamente eficientes para la envolvente térmica de las edificaciones. Secretaría de Energía-Comisión Nacional para el Uso Eficiente de la Energía.

Baker, N., y Steemers, K. (1995). The lt Method 2.0: An Energy Design Tool for Non-domestic Buildings. Cambridge: Cambridge Architectural Research Ltd.

——. (2000). Energy and Environment in Archi- tecture: A Technical Design Guide. Londres: Taylor & Francis.

Batty, M. (2009). Defining Density. Environment and Planning B: Planning and Design, 36(4): 571 y 572. doi: https://doi.org/10.1068/b3604ed.

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., y Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scien- tific Data, 5(1): 180-214. https://doi.org/10.1038/ sdata.2018.214

Berghauser Pont, M. Y., y Haupt, P. A. (2007). The relation between urban form and density. Ur- ban Morphology, 11(1): 62-65.

Berghauser Pont, M., y Haupt, P. (2010). Spacema- trix: Space, density, and urban form. Rotterdam: NAI.

Bruegmann, R. (2005). Sprawl: A compact history. Chicago: University of Chicago Press.

Fernández Per, Aurora. (2007). Density Projetcts, 36 nuevos conceptos de vivienda colectiva. Gráfi- cas Santamaria.

Forsyth, A., Brennan, C., Escobedo Ruiz, N., y Scott, M. (2016). Revitalizing Places: Improv- ing Housing and Neighborhoods from Block to Metropolis. Cambridge, ma: Harvard University Graduate School of Design. Recuperado el 24 de mayo de 2022 de https://research.gsd.harvard.edu/socialhousingmexico/files/2016/09/rp_book_090116_lp_hq.pdf https://doi.org/10.1016/j.proeng.2011.11.1996

Hien, W. N., Jusuf, S. K., Samsudin, R., Eliza, A., e Ignatius, M. (2011). A Climatic Responsive Urban Planning Model for High Density City: Singapore’s Commercial District. Internation- al Journal of Sustainable Building Technology and Urban Development, pp. 323-330. https://doi.org/10.5390/susb.2011.2.4.323

Hui, S. C. (2001). Low energy building design in high density urban cities. Renewable Energy, 24(3-4): 627-640. https://doi.org/10.1016/S0960- 1481(01)00049-0

Indovina, F. (2007). La ciudad de baja densidad. Lógicas, gestión y contención. (Vol. 1). Barcelona, España: S. A. de Litogrfia.

INEGI. (2020a). Scince Censo de Población y Vivienda 2020. Recuperado el 20 de mayo de 2022 de https://gaia.inegi.org.mx/scince2020/

——. (2020b). Climatología. https://www.inegi.org. mx/temas/climatologia/

Javanroodi, K., Mahdavinejad, M., y Nik, V. M. (2018). Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate. Applied Energy, pp. 714-746. doi: 10.1016/J.apenergy.2018.09.116.

Kämpf, J. H., Montavon, M., Bunyesc, J., Bolliger, R., y Robinson, D. (2010). Optimisation of buildings’ solar irradiation availability. Solar Energy, pp. 596-603 https://doi.org/10.1016/j.solener.2009.07.013

Lariviere, I., y Lafrance, G. T. (1999). Modelling the electricity consumption of cities: Effect of urban density. Energy Economics, núm. 21, pp. 53-66. doi: https://doi.org/10.1016/S0140- 9883(98)00007-3.

López Ordóñez, C. (2015). Análisis de la radiación en las calles de Barcelona y de Hermosillo. Barcelona: Universidad Politécnica de Cataluña.

López-Ordóñez, C., Crespo, I., y Roset, J. (2018). Condiciones ambientales del espacio público de ciudades dispersas en clima desértico-cálído. Proceedings of isuf-h 2018. Ciudad y formas urbanas: Perspectivas transversales (pp. 117-128).

Martin, L., March, L., Bullock, N., Dickens, P., Steadman, P., Echenique, M. C., y Lindsay, W. (1972). Urban Space and Structures. (L. Martin, ed.) Cambridge: Cambridge University Press.

Masmoudi, S., y Mazouz, S. (2004). Relation of geometry, vegetation and thermal comfort around buildings in urban settings, the case of hot arid regions. Energy and Buildings, 36(7): 710-719. https://doi.org/10.1016/j.enbuild.2004.01.043

Mercado, L., y Marincic, I. (2017). Morphology of the urban heat island of Hermosillo, Sonora and the contribution towards a sustainable city. Revista de Ciencias Biológicas y de la Salud, pp. 26-33.

Moreno, G., y Steadman, P. (2014). The relationship between density, built form and design. En: P. M. Carmona, Explorations in Urban Design: An Urban Design Research Primer (p. 193). Califor- nia, Estados Unidos: Ashgate Publishing, Ltd.

Naciones Unidas. (2020, 17 de junio). Objetivo 11: Lograr que las ciudades sean más inclusivas, seguras, resilientes y sostenibles. Objetivos de Desarrollo Sostenible. Naciones Unidas. Recu- perado el 28 de febrero de 2021 de https://www. un.org /sustainabledevelopment/es/cities/

——. (2021). Naciones Unidas. Obtenido de https:// www.un.org/sustainabledevelopment/es/cities/

Nevado García, E. (2019). Termografía del cañón urbano: Uso de la perspectiva para una evalu- ación térmica global de la calle. Universidad Politécnica de Cataluña.

Olgyay, V. (1967). Bioclimatic orientation method for buildings. International Journal of Biometeorology, pp. 163-174.

Olgyay, V., y Olgyay, A. (1963). Design with climate:

Bioclimatic approach to architectural regionalism: Some chapters based on cooperative research with Aladar Olgyay. Princeton Uni- versity Press.

Ratti, C., Baker, N., y Steemers, K. (2005). Energy consumption and urban texture. Energy and Buildings, 37(7): 762-776. doi: https://doi. org/10.1016/j.enbuild.2004.10.010.

Riera Pérez, M. G., y Rey, E. (2013). A multi-criteria approach to compare urban renewal scenari- os for an existing neighborhood. Case study in Lausanne (Switzerland). Building and Environment, núm. 65, pp. 58-70. https://doi.org/10.1016/j.buildenv.2013.03.017

Rode, P., Keim, C., Robazza, G., Viejo, P., y Schofield,

J. (2014). Cities and Energy: Urban Morphology and Residential Heat-Energy Demand. Environ- ment and Planning B: Planning and Design, pp. 138-162. https://doi.org/10.108/b39065

Salazar, J. (2001). Expansión o densificación? Reflexiones en torno al caso Bogotá. Revista Bitácora Urbano-Territorial, pp. 21-35.

Salvati, A., Coch, H., y Morganti, M. (2017). Effects of urban compactness on the building energy performance in Mediterranean climate. Energy Procedia, pp. 499-504. doi: https://doi. org/10.1016/j.egypro.2017.07.

Salvati, A., Palme, M., Chiesa, y Kolokotroi, M. (2020). Built form, urban climate and building energy modelling: Case-studies in Rome and Antofagasta. Journal of Building Performance Simulation, pp. 2255-2262. https://doi.org/10.10 80/19401493.2019.1707876

Shashua-Bar, L., Pearlmutter, D., y Erell, E. (2009). The cooling efficiency of urban landscape strategies in a hot dry climate. Landscape and Urban Planning, 92(3-4): 179-186. https://doi. org/10.1016/j.landurbplan.2009.04.005

Steadman, P. (1977). Energy and Patterns of Land Use. jae, 30(3): 62-67. https://doi. org/10.2307/1424311

Steemers, K. (2003). Energy and the city: Density, buildings and transport. Energy and Buildings, núm. 35, pp. 3-14. https://doi.org/10.1016/S0378- 7788(02)00075-0

Stewart, I. D., y Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12): 1879- 1900. https://doi.org/10.1175/bams-d-11-00019.1

Strømann-Andersen, J., y Sattrup, P. A. (2011). The urban canyon and building energy use: Urban density versus daylight and passive solar gains. Energy and Buildings, 43(8): 2011-2020.

https://doi.org/10.1016/j.enbuild.2011.04.007.

Vaggione, P. (2014). Planeamiento urbano para au- toridades locales. Bogotá: un-Habitat.

Zapatero Santos, M. A. (2017). La densidad urbana: Concepto y metodología. Madrid. https:// oa.upm.es/45491/

Published

2022-07-01

How to Cite

Córdova Borbón, F. A., & Alpuche Cruz, M. G. (2022). Relationship between energy performance of buildings and urban morphology: densification as a climate change mitigation strategy. Vivienda Y Comunidades Sustentables, (12), 27–54. https://doi.org/10.32870/rvcs.v0i12.194